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Abstract

The increasing deployment of photovoltaic (PV) systems has intensified the need for intelligent
monitoring, diagnostics, and optimization solutions capable of operating under dynamic
environmental and operational conditions. In this context, the integration of Artificial Intelligence (AI)
techniques with Internet of Things (IoT) infrastructures has emerged as a promising paradigm for
enhancing the performance, reliability, and autonomy of solar energy systems. This paper presents a
structured and analytical review of AI-enabled IoT approaches applied to photovoltaic monitoring
and management, with a particular focus on system architectures, data-driven intelligence, and
operational functionalities.

The review systematically categorizes existing studies according to their targeted applications,
including real-time performance monitoring, fault detection and diagnosis, predictive maintenance,
energy forecasting, and adaptive control mechanisms. Machine learning and deep learning
techniques are analyzed in relation to their data requirements, computational complexity, and
deployment layers within IoT-based PV systems. In addition, the role of collaborative experimental
environments, such as OASIS Colab, is discussed as a practical support tool for developing, training,
and validating AI models for photovoltaic data analysis in research-oriented settings.

Beyond summarizing existing solutions, this paper identifies key technical challenges related to data
quality, model generalization, scalability, and real-time implementation constraints. Finally, open
research directions are outlined to guide future developments toward more robust, explainable, and
scalable intelligent IoT architectures for photovoltaic energy systems.

Keywords
Artificial intelligence, Internet of Things, photovoltaic systems, intelligent monitoring, fault diagnosis,
predictive maintenance, energy forecasting, OASIS Colab.

1. Introduction

The global energy sector is undergoing a profound structural transformation driven by the urgent
need to reduce carbon emissions, enhance energy security, and ensure the long-term sustainability of
electricity generation. Within this transition, photovoltaic (PV) technology has emerged as a
cornerstone of renewable energy systems due to its modularity, declining cost, and suitability for
both centralized and decentralized deployment. However, as PV penetration increases across
residential, commercial, and utility-scale installations, maintaining system efficiency and reliability
under real operating conditions has become increasingly challenging.
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PV systems operate in environments characterized by high variability and uncertainty. Fluctuations in
solar irradiance, temperature-dependent electrical behavior, dust accumulation, partial shading, and
component aging directly affect energy yield and accelerate degradation processes. At large scale,
these effects compound across thousands of modules and inverters, making manual inspection and
static supervision strategies insufficient. Consequently, continuous monitoring, intelligent diagnostics,
and adaptive operation are no longer optional enhancements but essential capabilities for
sustainable PV systemmanagement [1].

Internet of Things (IoT) technologies provide a foundational layer for addressing these challenges by
enabling distributed sensing, real-time data acquisition, and remote supervision across PV assets.
Through networks of sensors, embedded controllers, and communication links, IoT-enabled PV
systems can continuously capture electrical, environmental, and operational data, offering
unprecedented visibility into system behavior [2]. Nevertheless, raw data streams alone do not
translate into actionable intelligence; their effective utilization requires advanced analytical methods
capable of learning complex patterns, handling uncertainty, and supporting operational decision-
making.

Artificial Intelligence (AI) techniques, including machine learning and deep learning, have therefore
become integral to modern PV analytics. By exploiting historical and real-time data, AI models
support tasks such as fault detection and diagnosis, predictive maintenance, energy forecasting, and
operational optimization [3], [4]. These capabilities enable proactive maintenance strategies, reduce
downtime, and improve grid integration by supporting uncertainty-aware forecasting and energy
balancing in smart grid environments [5], [8]. However, AI effectiveness in PV systems is inherently
constrained by data quality, deployment latency, computational resources, and system integration.

The convergence of AI with IoT infrastructures commonly referred to as Artificial Intelligence of
Things (AIoT) represents a system-level paradigm in which sensing, communication, analytics, and
actuation are co-designed rather than independently deployed. In PV applications, AIoT transforms
passive generation assets into adaptive cyber–physical systems capable of autonomous monitoring,
learning-driven decision-making, and closed-loop control [9]. From an engineering perspective, the
critical challenge is not merely algorithm selection, but determining where intelligence should reside
(device, edge, fog, or cloud), how data modalities are fused, and how decisions propagate reliably to
physical actuators.

In parallel, the increasing complexity of AI pipelines motivates reproducible experimentation and
transparent evaluation practices. Collaborative computational environments can support the
documentation and replication of preprocessing steps, model configurations, and benchmarking
procedures reported in the literature. In this survey, platforms such as OASIS Colab are discussed
strictly as research-oriented environments that may facilitate illustrative replication and
methodological transparency. No assumptions are made regarding their industrial adoption, and no
experimental claims are derived from their use.

Against this background, this review provides a structured and deployment-aware analysis of AI-
enabled IoT approaches for photovoltaic systems. Rather than enumerating algorithms, the survey
emphasizes functional objectives, architectural constraints, and evidence traceability. The goal is to
support informed design choices for intelligent, reliable, and scalable AIoT-based PV systems.

1.1. Positioning Existing Surveys and the Added Value of This Work

A substantial body of review literature addresses either AI techniques in photovoltaic systems or IoT-
based monitoring and automation for solar energy. AI-focused surveys typically concentrate on
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specific tasks such as energy forecasting, fault diagnosis, or optimization algorithms, while IoT-
oriented reviews emphasize sensing architectures, communication protocols, and supervisory control
frameworks. Although these works provide valuable insights, they often treat AI and IoT as loosely
connected components rather than as an integrated decision pipeline.

A recent and closely related review by Boucif et al. (2025) surveys Artificial Intelligence of Things
applications for solar energy monitoring and control, organizing the literature around major
functional domains such as monitoring, forecasting, predictive maintenance, fault detection, and
optimization mechanisms including MPPT, solar tracking, and automated cleaning [16]. While this
contribution offers a comprehensive thematic overview, broader limitations persist across the review
landscape:

1. Limited deployment awareness:Most surveys describe AI methods and applications without
systematically linking them to deployment layers (edge, fog, cloud) and their associated
latency and resource constraints.

2. Weak evidence traceability: Performance claims are often difficult to compare due to
inconsistent reporting of datasets, metrics, and validation contexts.

3. Underdeveloped system-level synthesis: Interactions between data quality, communication
reliability, model generalization, and actuation are frequently discussed qualitatively rather
than analyzed as coupled system constraints.

Added Value of This Survey

To address these gaps, this work adopts a system-oriented perspective and contributes:

 C1) A deployment-aware taxonomy that jointly classifies AIoT-based PV studies by functional
objective, data modality, and computational layer.

 C2) An evidence-traceable study matrix enabling transparent comparison of tasks, models,
datasets, metrics, and validation contexts across studies.

 C3) A constraint-driven gap analysis that maps operational limitations (data scarcity, edge
constraints, communication reliability, security) to concrete research directions.

Table 1. Positioning of Existing Surveys and Added Value of This Review

Aspect Typical Existing Surveys This Survey

Primary Perspective AI or IoT treated separately System-level AIoT integration

Functional Coverage Partial (forecasting, FDD, or
monitoring)

Unified coverage across PV decision loops

Deployment
Awareness

Rarely addressed Explicit (device/edge/fog/cloud)

Evidence Traceability Narrative summaries Structured study matrix with validation
context

Real-Time
Constraints

Limited discussion Analyzed as design constraints

Reproducibility Focus Minimal Emphasized via methodological
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transparency

Research Gaps High-level Constraint-driven and deployment-aware

1.2. Review Methodology and Analytical Framework

To meet Q1 IEEE standards for rigor and reproducibility, this survey follows a structured methodology
emphasizing traceable selection, deployment-aware coding, and evidence-based synthesis.

1.2.1. Sources and Search Strategy

Peer-reviewed journal articles and conference proceedings were retrieved from major scientific
databases, including IEEE Xplore, Scopus, Web of Science, ScienceDirect, and ACM Digital Library.
Search queries combined PV-related terms with AI and IoT concepts, for example:

 (“photovoltaic” OR “PV”) AND (“IoT” OR “edge computing”) AND (“machine learning” OR
“deep learning”)

 (“PV fault” OR “anomaly”) AND (“diagnosis” OR “predictive maintenance”)

 (“PV forecasting”) AND (“LSTM” OR “deep learning” OR “probabilistic”)

The review emphasizes recent literature while retaining seminal works required to establish
methodological baselines.

1.2.2. Inclusion and Exclusion Criteria

Studies were included if they:

 Utilized PV operational or inspection data for AI-based inference;

 Integrated IoT-enabled sensing or communication with PV analytics or control;

 Provided deployment or architectural considerations relevant to real systems;

 Reported evaluation metrics or validation contexts.

Studies lacking PV relevance, methodological clarity, or peer review were excluded.

1.2.3. Screening and Coding Procedure

The screening process involved deduplication, title/abstract filtering, and full-text assessment. Each
included study was coded according to:

 Functional objective (monitoring, FDD, maintenance, forecasting, optimization),

 Data modality (electrical, environmental, vision/thermal),

 AI model family,

 Deployment layer,

 Evaluation metrics and validation setting.

1.2.4. Analytical Framework
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The analytical framework organizes evidence along the pipeline:
Function → Data →Model → Deployment → Decision/Actuation, enabling consistent comparison
across heterogeneous studies.

1.2.5. Reproducibility and Methodological Support

Collaborative environments such as OASIS Colab are referenced solely as illustrative tools for
replicating reported preprocessing and modeling workflows, without introducing new datasets or
experimental claims.

1.2.6. Methodological Outcomes

The methodology yields three artifacts used throughout the review:

1. A deployment-aware taxonomy of AIoT applications in PV systems,

2. A structured study matrix enabling evidence traceability,

3. A gap analysis linking operational constraints to future research directions.

2. AIoT in Photovoltaic Systems: Technical Background

The convergence of Artificial Intelligence (AI) and the Internet of Things (IoT), commonly referred to
as Artificial Intelligence of Things (AIoT), has introduced a paradigm shift in the way photovoltaic (PV)
systems are monitored, controlled, and optimized. Traditional PV systems rely on static control logic
and periodic inspection, which limits their ability to adapt to dynamic environmental conditions and
operational uncertainties. AIoT-enabled PV systems, by contrast, integrate intelligent data analytics
with pervasive sensing and communication infrastructures, enabling real-time awareness,
autonomous decision-making, and adaptive control across the entire energy conversion chain.

This section establishes the technical background required to understand AIoT-based PV systems. It
introduces the core AI paradigms relevant to solar energy applications, outlines the fundamental IoT
building blocks supporting data acquisition and connectivity, and discusses the computing paradigms
that enable scalable and low-latency intelligence deployment.

2.1. Artificial Intelligence Paradigms for PV Systems

Artificial Intelligence encompasses a broad class of computational techniques that enable machines
to perceive patterns, learn from data, and make informed decisions. In the context of PV systems, AI
serves as the analytical engine that transforms raw measurements such as irradiance, temperature,
voltage, and current into actionable insights for monitoring, forecasting, diagnostics, and control [5],
[6].

Rather than relying on a single technique, AIoT-based PV systems typically employ a hierarchy of AI
paradigms, each suited to different data characteristics, operational constraints, and decision
horizons.

2.1.1. Machine Learning

Machine Learning (ML) represents a foundational AI paradigm in which models infer relationships
directly from data without explicit physical modeling. ML techniques are particularly effective in PV
applications where system behavior is nonlinear, partially observable, or influenced by stochastic
environmental factors [8].
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ML approaches can be broadly categorized according to the availability of labeled data and the nature
of system interaction:

 Supervised learning is commonly applied to regression and classification problems, such as
power prediction, fault classification, and soiling state identification, using labeled historical
measurements.

 Unsupervised learning is suited for anomaly detection and pattern discovery when fault
labels are unavailable or incomplete, a frequent scenario in large-scale PV deployments.

 Semi-supervised learning bridges these two paradigms by exploiting limited labeled data
alongside abundant unlabeled operational data, which is particularly relevant for rare fault
conditions.

 Reinforcement learning enables adaptive decision-making through interaction with the
environment and has been explored for control-oriented tasks such as cleaning scheduling
and operational optimization [18].

2.1.2. Deep Learning

Deep Learning (DL) extends classical ML by employing multi-layer neural architectures capable of
automatic feature extraction from raw, high-dimensional data. DL is particularly effective when PV
systems generate large volumes of heterogeneous data, including time-series measurements and
visual or thermal imagery [21], [27].

Different DL architectures address distinct PV-related challenges:

 Convolutional Neural Networks (CNNs) excel in spatial feature extraction and are widely
used for image-based fault detection, soiling assessment, and module inspection.

 Recurrent Neural Networks (RNNs) and their variants model temporal dependencies and are
therefore well suited for energy forecasting and degradation analysis.

 Long Short-TermMemory (LSTM) networks address long-term temporal correlations and are
frequently adopted for predictive maintenance and time-series fault diagnosis [28].

While DL models often achieve superior accuracy, their deployment in PV systems must account for
data availability, computational cost, and inference latency factors that directly influence the choice
of deployment layer in AIoT architectures.

2.1.3. Generative AI and Data-Centric Intelligence
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More recently, Generative AI (GenAI) has emerged as a complementary paradigm for PV applications
where data scarcity, imbalance, or uncertainty pose significant challenges. Generative models learn
latent data distributions and can synthesize realistic samples or reconstruct system behavior under
nominal conditions [30], [54].

In AIoT-based PV systems, GenAI techniques support:

 Data augmentation, enabling more robust training of fault detection models;

 Unsupervised anomaly detection, by learning normal operational manifolds;

 Scenario simulation, assisting in stress-testing forecasting and control strategies.

Representative GenAI architectures include Generative Adversarial Networks (GANs) and Variational
Autoencoders (VAEs), which are increasingly explored as supporting tools rather than standalone
decision engines. Despite their promise, practical deployment remains constrained by computational
demands and interpretability considerations.

Where illustrative experimentation is beneficial, OASIS Colabmay be used as a neutral cloud-based
environment to prototype generative workflows and visualize learned representations, without
introducing new datasets or experimental claims.

2.2. Internet of Things Foundations for PV Systems

While AI provides intelligence, IoT constitutes the physical and digital backbone that enables data
flow within PV systems. IoT architectures interconnect sensors, actuators, communication networks,
and computing resources to facilitate continuous observation and control of PV assets [10], [11].

2.2.1. Sensing and Actuation Layer

PV-oriented IoT systems rely on heterogeneous sensors to capture both electrical and environmental
states. Typical measurements include voltage, current, irradiance, temperature, humidity, and soiling
indicators. These measurements form the primary input for AI-based analytics and control logic [43].

Actuators translate AI-driven decisions into physical actions, such as panel reorientation, cleaning
activation, or inverter control. The tight coupling between sensing and actuation is a defining feature
of closed-loop AIoT-enabled PV systems.

2.2.2. Communication and Data Exchange

Reliable data transmission is essential for distributed PV installations, particularly in geographically
dispersed or remote environments. IoT communication technologies vary in range, bandwidth, and
energy efficiency, leading to different suitability profiles for PV applications [47], [48].

Rather than enumerating protocols, this survey emphasizes functional trade-offs:

 short-range protocols favor high data rates and local control;

 low-power wide-area technologies enable long-range monitoring with minimal energy
consumption;

 wired protocols ensure deterministic performance in industrial-scale PV plants.

Table 2. Communication Technologies and Functional Trade-offs in PV IoT Systems

Communicatio Functional Energy Latency Deployment Key Trade-
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n Category Coverage Efficiency Characteristic
s

Context in PV
Systems

offs

Short-Range
Wireless
Communication

Local device-
to-device and
device-to-
gateway
communicatio
n

Low to
moderate

Very low
latency

Residential PV
systems, smart
buildings, local
monitoring and
control

High data
rate but
limited
coverage;
scalability
constrained
by range

Low-Power
Wireless Mesh
Networks

Distributed
node
connectivity
with multi-hop
routing

Very high Low to
moderate
latency

PV monitoring
within microgrids
and smart energy
communities

Robust and
fault-
tolerant but
increased
routing
overhead

Low-Power
Wide Area
Networks
(LPWAN)

Long-distance,
low-
throughput
data
transmission

Very high Moderate
latency

Utility-scale and
geographically
dispersed PV
plants

Excellent
coverage
with limited
bandwidth
and payload
size

Cellular-Based
Communication

Wide-area
connectivity
with operator-
managed
infrastructure

Moderate
to high

Moderate
latency

Grid-connected PV
plants requiring
remote supervision

Reliable
connectivity
but higher
energy and
operational
costs

Satellite
Communication

Global
connectivity
independent of
terrestrial
infrastructure

Low High latency Remote and off-
grid PV
installations

Extreme
coverage at
the expense
of latency
and cost

Industrial
Wired
Communication

Deterministic,
high-reliability
data exchange

High
(externall
y
powered)

Very low and
predictable
latency

Industrial PV
plants, SCADA-
integrated systems

High
reliability
and security
but limited
flexibility
and higher
installation
cost

Lightweight
Messaging
Protocols

Efficient
application-
layer data

Very high Low latency Cloud–edge–
device data
synchronization in

Minimal
overhead
but requires
secure
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exchange PV systems configuratio
n

2.2.3. Computing Paradigms: Edge, Fog, and Cloud

The volume and velocity of PV data necessitate distributed computing strategies. AIoT-based PV
systems commonly adopt a layered computing paradigm spanning edge, fog, and cloud resources [18],
[36].

 Edge computing enables low-latency inference and immediate control near the data source.

 Cloud computing provides scalable storage and high-performance analytics for long-term
optimization and fleet-level insights.

 Fog computing bridges these layers by supporting localized aggregation and intermediate
decision-making.

2.3. From AI and IoT to AIoT-Enabled PV Systems

AIoT emerges when AI analytics and IoT infrastructures are co-designed rather than independently
deployed. In PV systems, this co-design enables continuous perception, learning-driven decision-
making, and autonomous actuation across multiple temporal and spatial scales [49], [55].

This integration transforms PV installations from passive energy generators into adaptive cyber–
physical systems, capable of self-monitoring, self-optimization, and proactive maintenance. The
technical background established in this section provides the foundation for the subsequent analysis
of AIoT architectures and application domains.

3. AIoT Functional Applications in PV Systems

3.1 Fault Detection and Diagnosis (FDD): Vision, Sensors, and Hybridization

Vision-driven FDD targets spatially localized defects (e.g., surface damage, hotspots, soiling patterns)
using deep vision models. Deep ensemble learning has demonstrated robust defect recognition in PV
imagery under variability [21], while lightweight YOLO variants enable faster inference suitable for
constrained deployments [22], [23]. The technical trade-off is fundamental: visual pipelines provide
high spatial observability but are often event-driven/periodic (inspection windows, weather
dependence), which weakens continuous protection coverage.

Sensor-driven FDD uses electrical and contextual telemetry to continuously detect anomalies. Hybrid
analytical–ANN formulations compare expected and measured behavior for automated diagnosis [24],
while kNN monitoring schemes improve robustness to noise and process drift in PV monitoring
streams [25]. For PV arrays, intelligent diagnosis based on array voltage and string currents via
Random Forest has shown strong discrimination among fault classes without relying on complex
physics models at runtime [29]. However, sensor-only FDD often suffers from fault signature
ambiguity (different faults producing similar electrical traces) and limited fault localization
granularity.

Hybrid FDD fuses time-series electrical behavior with learned representations (e.g., CNN on
structured electrical graphs, residual learning on I–V curves) to improve separability of fault modes.
CNN with Electrical Time Series Graphs (ETSG) enhances feature learning directly from sequential
electrical data [30], while deep residual networks operating on I–V curves and ambient conditions
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reduce manual feature engineering burden and can improve generalization within tested regimes [32].
Yet hybridization introduces new system burdens: synchronization, calibration, and multi-modal
alignment, which directly increases integration complexity and maintenance overhead.

Field-oriented IoT FDD implementations reinforce an important practical point: model quality is
secondary if the telemetry pipeline is fragile. Low-cost IoT monitoring and fault detection prototypes
demonstrate feasibility under constrained budgets [50], and online IoT monitoring architectures for
PV arrays illustrate real-time telemetry acquisition and remote visibility [51]. Communication-layer
choices (e.g., ZigBee + cellular backhaul) impact end-to-end reliability and latency; ZigBee/4G real-
time monitoring architectures specifically highlight how network design becomes part of the
diagnostic performance envelope [52].

3.2 Predictive Maintenance (PM): From Deviation Detection to Fleet-Scale Robustness

Predictive maintenance aims to detect degradation early and plan interventions before yield losses
accumulate. ANN-based PV prognostics frameworks formalize health monitoring through learned
performance baselines [34], while anomaly detection approaches provide deviation alerts that can be
scheduled into maintenance windows [35]. For large-scale plants, hybrid pipelines combining
clustering and temporal models (e.g., K-Means + LSTM) target scalability across many
strings/components [36], and trend-based analytics demonstrate that maintenance value is strongly
tied to temporal drift modeling rather than point forecasts alone [37].

A critical gap remains: transferability. Many PMmodels exhibit strong site performance but degrade
under new climates, sensor configurations, or PV technologies. Unsupervised anomaly detection
approaches partially mitigate labeling scarcity and can detect rare patterns, but may raise false
positives depending on seasonal regimes and sensor noise [33]. For soiling, IoT + ANN solutions
estimate soiling ratio remotely, but accuracy depends on sensor calibration and stable data
transmission [53]. Practically, PM at fleet scale demands cross-site benchmarking and reproducibility,
motivating collaborative experimentation and reproducible pipelines (e.g., OASIS CoLab) rather than
isolated model claims.

3.3 Forecasting and Operational Optimization: Closing the Loop Without Destabilization

Forecasting is operationally valuable when it is “control-relevant”: it should reduce uncertainty at the
decision horizon where actuators and dispatch operate. Neural networks on preprocessed radiation
time series remain widely used for day-ahead settings [38], while short-term irradiance forecastability
analyses emphasize that micro-climate variability bounds achievable accuracy [39]. Hybrid PV energy
forecasting methods illustrate how combining complementary learners improves robustness across
varying meteorological drivers [40]. Data augmentation and weather-classification pipelines based on
GANs + CNNs address data sparsity and regime imbalance in day-ahead PV forecasting [41]. Hybrid
day-ahead PV forecasting approaches also show that regularization and structured preprocessing can
stabilize prediction error under variability [42]. Probabilistic deep schemes (e.g., VAE-based
dimensionality reduction + Bayesian learning) explicitly target uncertainty-aware forecasting for
operational decisions [43].

Optimization mechanisms especially MPPT and cleaning must be evaluated by net energy gain versus
actuation cost and risk. MPPT review literature stresses that MPPT selection is not only a tracking
problem but also a stability and responsiveness problem under fast irradiance changes [54]. IoT-
enabled high-efficiency MPPT charge controller implementations demonstrate near-maximum
conversion efficiency under test conditions, but their value depends on robust sensing and safe
control logic [55]. For cleaning, smart dust detection systems that trigger cleaning illustrate the

AIUB Journal of Science and Engineering

Volume 8, Issue 10, 2025

Issn No : 1608-3679

Page No: 104



control logic coupling between sensing and actuation (cleaning should be initiated only when energy
recovery exceeds cost and water/maintenance constraints) [10].

This figure illustrates the end-to-end AIoT workflow for photovoltaic (PV) energy management,
starting from sensing (PV, environmental, and operational data acquisition), followed by
communication through IoT protocols, edge intelligence for low-latency inference and local decision-
making, and cloud analytics for large-scale learning, optimization, and long-term forecasting. The
loop is closed by autonomous actuation, enabling real-time control actions such as MPPT adjustment,
fault mitigation, cleaning activation, and energy dispatch. The integration of OASIS CoLab is
highlighted as a collaborative layer supporting data sharing, federated experimentation, and
reproducible AI model development across edge–cloud infrastructures.

Table 3. Study Matrix of Representative AIoT-Based Photovoltaic Systems

Ref. Year PV Task Data Type AI Model Deploy
ment
Layer

Evaluation
Metrics (as
reported)

Validation
Context

[21] 2022 FDD Image Deep
ensemble

Edge/Cl
oud

(Model
metrics
reported in
study)

Field/Benchmark
imagery

[22] 2023 FDD Image Lightweig
ht YOLO

Edge (Detection
metrics
reported)

Field/Benchmark
imagery

[23] 2023 FDD Image YOLOv5 Edge/Cl
oud

(Detection
metrics
reported)

Field/Benchmark
imagery

[24] 2015 FDD Electrical+Enviro ANN + Edge/Fo (Detection
performance

Lab/Experimenta
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nmental analytical g reported) l

[25] 2019 FDD Electrical
(monitoring
residuals)

kNN
monitorin
g

Edge/Fo
g

(Monitoring
metrics
reported)

Field PV
monitoring

[29] 2018 FDD Electrical Random
Forest

Edge/Cl
oud

(Accuracy/dia
gnosis
metrics
reported)

MATLAB + real
PV setup

[30] 2019 FDD Electrical time-
series

CNN +
ETSG

Edge/Cl
oud

(Diagnosis
accuracy
reported)

Experimental
case studies

[32] 2019 FDD I–V + Ambient Deep
ResNet

Edge/Cl
oud

(Accuracy
reported)

Sim + real
datasets

[50] 2019/
2020*

Monitoring
/FDD

Electrical+Enviro
nmental

(Rule/ana
lytics +
IoT)

Edge/Cl
oud

(System-level
indicators)

Field prototype

[51] 2017 Monitoring Electrical (Monitori
ng + IoT)

Device/
Edge

(System-level
indicators)

Field
deployment

[52] 2020 Monitoring Electrical (Monitori
ng + IoT)

Edge/Cl
oud

(Latency/avail
ability
indicators)

Field system

[34] 2012 PM Environmental+E
lectrical

ANN Cloud (PHM
indicators)

Simulation/Expe
rimental

[35] 2018 PM Electrical+Enviro
nmental

ANN
(anomaly)

Cloud (Anomaly
metrics
reported)

Field datasets

[36] 2023 PM Electrical+Enviro
nmental

K-Means
+ LSTM

Cloud/E
dge

(Detection
metrics
reported)

Large-scale PV
plant data

[37] 2024 PM Electrical Trend
analytics

Cloud (Sensitivity/ac
curacy
reported)

Field PV plant

[33] 2020 PM/FDD Electrical
monitoring

Unsupervi
sed (e.g.,
VAE-
family)

Cloud (Detection
rate reported)

PV monitoring
data

[53] 2023 Monitoring
/PM

Environmental+E
lectrical

ANN Cloud MSE/R²
(reported)

Field soiling
stations

[38] 2010 Forecastin Environmental ANN Cloud Forecast
errors

Historical time
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g (reported) series

[39] 2015 Forecastin
g

Environmental kNN/ANN
(analysis)

Cloud RMSE
(reported)

Multi micro-
climates

[40] 2015 Forecastin
g

Environmental Hybrid
models

Cloud RMSE
(reported)

PV systems
datasets

[41] 2019 Forecastin
g

Environmental GAN +
CNN

Cloud Accuracy/RM
SE (reported)

Day-ahead
forecasting

[42] 2018 Forecastin
g

Environmental Hybrid
forecast

Cloud MAPE/RMSPE
(reported)

Day-ahead
forecasting

[43] 2023 Forecastin
g

Environmental+P
V

VAE +
Bayesian
DL

Cloud Probabilistic
metrics
(reported)

Energy
forecasting

[54] 2019 Optimizati
on (MPPT)

Electrical (Compara
tive
MPPT)

Device/
Edge

Tracking
performance
(reported)

Review/Compara
tive

[55] 2020 Optimizati
on (MPPT)

Electrical MPPT
controller

Device/
Edge

Efficiency
(reported)

Hardware +
testing

4. Challenges, Open Issues, and Future Research Directions (Integrated with Section 3)

The preceding evidence shows that AIoT value in PV systems is constrained less by “model choice”
and more by end-to-end system validity: sensing integrity, communications resilience, deployment-
layer suitability, and safe actuation. The following challenges are therefore framed as system-level
bottlenecks derived directly from Section 3 findings.

4.1 Data Integrity, Drift, and Cross-Site Generalization

Field telemetry is affected by sensor drift, intermittent connectivity, and seasonal regime shifts
conditions that degrade both FDD and PM reliability. Even strong learners may overfit plant-specific
distributions, explaining why predictive maintenance pipelines struggle to generalize across sites [33],
[35], [37]. Future work should prioritize cross-site evaluation protocols and reproducible pipelines
enabling consistent benchmarking under shared assumptions.

4.2 Edge Constraints and Latency-Critical Decision Loops

Vision-based FDD and deep hybrid diagnosis can be computationally heavy, challenging edge
deployment under power/latency constraints [21], [23], [30], [32]. Conversely, sensor-based schemes
enable real-time operation but can be ambiguous without spatial context [24], [25], [29]. The open
issue is placement optimization: which inference runs on-device/edge versus cloud, given bandwidth
and latency envelopes.

4.3 Communications Robustness and Protocol Heterogeneity

IoT PV systems demonstrate that monitoring reliability becomes a first-order variable in diagnostic
performance, especially in multi-node systems (e.g., ZigBee/4G or heterogeneous gateways) [51], [52].
Real plants require protocol interoperability with resilient backhaul and secure transport; otherwise,
control loops risk being destabilized by delayed or missing data.
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4.4 Control Safety: Optimization That Does Not Harm the Plant

MPPT and cleaning actuation must be controlled safely under uncertain sensing and variable
irradiance. MPPT method selection is bounded by stability and transient response limits [54], and IoT-
enabled MPPT controllers must be validated under realistic disturbances rather than idealized tests
[55]. Cleaning triggering based on dust detection requires strict cost–benefit decision logic and
environmental constraints (water, abrasion, downtime) [10], [53].

4.5 Collaborative and Reproducible AIoT as a Practical Research Direction

A practical research direction is to treat AIoT PV research as “collaborative engineering science”
rather than isolated model reporting. OASIS CoLab can be positioned as a collaboration layer
enabling shared datasets, federated experimentation, and reproducible pipelines across edge–cloud
infrastructures directly addressing generalization and benchmarking gaps surfaced in
FDD/PM/forecasting results.

This vision diagram highlights the evolution from isolated AI → AIoT → collaborative AIoT,
emphasizing the edge–cloud continuum, privacy-preserving federated learning, and OASIS CoLab as
a collaboration and research layer that supports reproducible experimentation and cross-site
validation for PV fleets.

Table 4 synthesizes the principal challenges and open research gaps in AIoT-based photovoltaic (PV)
systems by mapping technical limitations to their system-level impact and corresponding research
directions. The analysis reveals that data scarcity, limited model generalization, and edge-resource
constraints remain the dominant barriers to scalable deployment [18], [21], [26]. Communication
reliability, security, and interoperability further constrain closed-loop control and large-scale
integration, particularly in grid-connected PV infrastructures [10], [43], [48].
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Table 4. Key Challenges, Research Gaps, and Future Directions in AIoT-Based PV Energy Systems

Domain Current
Limitation

Observed Impact on
PV Systems

Emerging
Research
Directions

Representative
References

Data Availability
& Quality

Scarcity of
labeled fault and
degradation data;
site-specific
datasets

Reduced robustness
of AI models; poor
generalization across
PV plants

Self-supervised
learning,
synthetic data
generation, cross-
site data sharing

[18], [21], [26],
[28], [29]

Model
Generalization

Overfitting to
specific climates,
PV technologies,
or layouts

Limited
transferability of AI
solutions between
installations

Transfer learning,
domain
adaptation,
federated
learning

[21], [25], [27],
[30]

Edge Intelligence Limited
computation,
memory, and
power at edge
devices

Latency–accuracy
trade-off;
constrained real-time
control

Lightweight
models, model
compression,
edge–cloud co-
design

[33], [34], [36],
[39]

Edge–Cloud
Coordination

Fragmented
orchestration
between edge,
fog, and cloud
layers

Inefficient data
utilization and
delayed decision-
making

Hierarchical AIoT
architectures,
adaptive
workload
allocation

[36], [37], [38],
[41]

Communication
Reliability

Network
instability and
protocol
heterogeneity

Control instability,
data loss in large-
scale PV systems

Cross-layer
optimization,
adaptive IoT
protocols

[10], [43], [44],
[46]

Fault Detection
& Diagnostics

Dependence on
single data
modality (vision
or electrical)

Missed or delayed
fault identification

Multi-modal AI
(vision + time-
series), hybrid AI
models

[22], [23], [24],
[27]

Predictive
Maintenance

High dependency
on historical data
and site-specific
tuning

Limited scalability
and delayed
maintenance actions

Continual
learning, online
model updating

[30], [31], [32],
[35]

Energy
Forecasting &
Uncertainty

Sensitivity to
weather
variability and
data drift

Reduced forecast
reliability for grid
integration

Probabilistic
forecasting,
ensemble and
hybrid AI models

[39], [40], [41],
[42]

Security & Vulnerable IoT
endpoints and

Risk to grid stability Privacy-
preserving AI,

[48], [50], [51],
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Privacy centralized data
storage

and data integrity federated
learning, secure
edge inference

[54]

Explainability &
Trust

Black-box AI
models limit
operator trust

Resistance to
deployment in
critical energy
infrastructure

Explainable AI
(XAI), human-in-
the-loop systems

[11], [12], [13]

System
Integration

Lack of unified
platforms and
standards

High deployment and
maintenance costs

Open
architectures,
interoperable
AIoT frameworks

[43], [44], [47]

Research
Reproducibility

Fragmented
experimental
setups and
datasets

Difficult
benchmarking and
comparison

Collaborative
research
platforms

[53], [54], [55]

5. Discussion

The synthesis presented in this review demonstrates that the value of AIoT in photovoltaic (PV)
systems does not primarily arise from the choice of a specific learning algorithm, but from the co-
design of sensing, communication, computation, and actuation layers. Across fault detection,
predictive maintenance, forecasting, and optimization, the literature consistently shows that isolated
improvements at the model level yield diminishing returns when system-level constraints are ignored.

5.1. From Algorithm-Centric to System-Centric Intelligence

A central observation emerging from Section 3 is that much of the reported progress in AI-based PV
applications is algorithm-centric, while real-world deployment success is system-centric. Vision-
based FDD models, for example, achieve high diagnostic accuracy under controlled conditions, yet
their operational effectiveness is bounded by inspection periodicity, data acquisition logistics, and
inference latency. Conversely, sensor-driven approaches enable continuous monitoring but suffer
from limited observability and fault ambiguity.

This dichotomy reveals a fundamental insight: accuracy metrics alone are insufficient indicators of
operational intelligence. Instead, AIoT effectiveness depends on whether inference can be executed
within the temporal, energy, and reliability envelopes imposed by PV plant operation. Hybrid AIoT
designs partially address this limitation, but at the cost of increased integration complexity, data
synchronization overhead, and maintenance burden trade-offs that are rarely quantified in existing
studies.

5.2. Predictive Maintenance as a Scalability Bottleneck

Predictive maintenance illustrates the gap between laboratory performance and fleet-level
applicability. While learning-based PMmodels successfully capture degradation trends within
individual plants, their limited transferability across sites exposes a critical scalability bottleneck.
Environmental heterogeneity, sensor calibration drift, and installation-specific characteristics
introduce distribution shifts that undermine generalization.
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This limitation suggests that future progress in PM will not be driven solely by deeper architectures or
larger datasets, but by collaborative and reproducible learning paradigms that explicitly account for
cross-site variability. The literature implicitly converges on the need for shared benchmarking, cross-
plant validation, and standardized evaluation protocols requirements that extend beyond
conventional single-dataset studies.

5.3. Forecasting and Optimization: Intelligence Must Close the Loop

Energy forecasting studies consistently report improved prediction accuracy through hybrid and deep
learning models; however, their operational impact depends on how forecasts are embedded within
control loops. Forecasts that are decoupled from actuation risk becoming decision-irrelevant,
particularly under fast-changing irradiance conditions and storage constraints.

Similarly, optimization mechanisms such as MPPT and automated cleaning demonstrate that context
awareness is more important than continuous actuation. AIoT systems that trigger control actions
only when net energy gain exceeds operational cost represent a qualitative shift from static
optimization toward cost-aware autonomy. This shift highlights the need to evaluate AIoT solutions
using system-level performance indicators such as yield stability, component stress, and maintenance
overhead rather than isolated efficiency gains.

5.4. Edge–Cloud Continuum as an Enabler and a Constraint

The edge–cloud continuum emerges as both an enabler and a constraint for AIoT-based PV systems.
Edge intelligence reduces latency and enhances resilience under network disruptions, but imposes
strict limits on model complexity and energy consumption. Cloud analytics support large-scale
learning and long-term optimization, yet introduce latency, dependency on connectivity, and data
privacy concerns.

The reviewed studies collectively indicate that optimal deployment is not binary (edge versus cloud),
but requires adaptive partitioning of intelligence across layers. This partitioning must be guided by
task criticality, response time requirements, and communication reliability dimensions that are still
insufficiently formalized in current research.

5.5. Trust, Reproducibility, and the Path to Deployment-Ready AIoT

A recurring but often implicit challenge across AIoT PV studies is the lack of reproducibility and
trustworthiness. Variations in datasets, evaluation metrics, and experimental assumptions make it
difficult to compare results or assess readiness for deployment. This fragmentation limits cumulative
scientific progress and slows industrial adoption.

Collaborative experimentation environments such as OASIS CoLab, positioned as a neutral research
and benchmarking layer offer a practical pathway to address these gaps. By enabling shared datasets,
reproducible pipelines, and cross-site experimentation without exposing raw operational data, such
platforms align with emerging needs for trustworthy, scalable, and privacy-aware AIoT development.

5.6. Implications for Research and Practice

Collectively, the findings of this review suggest that the next phase of AIoT research in PV systems
should prioritize:

 System-level evaluation frameworks that integrate sensing, learning, communication, and
actuation;

 Generalization-aware learning strategies validated across heterogeneous PV installations;
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 Deployment-conscious AI design, balancing accuracy, latency, energy consumption, and
maintainability;

 Standardized and collaborative research practices that support reproducibility and cross-
study comparability.

Without these shifts, further gains at the algorithmic level are unlikely to translate into meaningful
improvements in large-scale PV operation.

5. Conclusion

This review has examined the role of Artificial Intelligence of Things (AIoT) in transforming
photovoltaic (PV) systems from conventionally monitored assets into intelligent, adaptive, and
autonomous energy systems. By critically analyzing fault detection, predictive maintenance,
forecasting, and optimization applications, the study demonstrates that AIoT effectiveness depends
primarily on system-level integration rather than isolated algorithmic performance. The findings
highlight that sensing reliability, communication resilience, and appropriate placement of intelligence
across the edge–cloud continuum are decisive factors for real-world deployment. While AI-based
methods significantly enhance diagnostic accuracy and operational awareness, their scalability is
constrained by data heterogeneity, model generalization limits, and resource constraints at the edge.
The review further shows that optimization mechanisms deliver sustained value only when
embedded within closed-loop, cost-aware control architectures. Emerging collaborative and
reproducible research paradigms offer a promising pathway to address these challenges and
accelerate translation from experimental studies to field-ready solutions. Overall, AIoT represents a
necessary but not sufficient condition for next-generation PV systems; its full potential will be realized
only through holistic co-design of data, intelligence, and control layers.

List of Abbreviations

Abbreviation Full Term

AI Artificial Intelligence

AIoT Artificial Intelligence of Things

ANN Artificial Neural Network

BLE Bluetooth Low Energy

CNN Convolutional Neural Network

DL Deep Learning

DT Decision Tree

Edge AI Artificial Intelligence executed at the network edge

ELM Extreme Learning Machine

ESS Energy Storage System

ETSG Electrical Time-Series Graph

AIUB Journal of Science and Engineering

Volume 8, Issue 10, 2025

Issn No : 1608-3679

Page No: 112



Abbreviation Full Term

EV Electric Vehicle

FDD Fault Detection and Diagnosis

FL Federated Learning

GAN Generative Adversarial Network

GenAI Generative Artificial Intelligence

GHI Global Horizontal Irradiance

GPR Gaussian Process Regression

GRNN General Regression Neural Network

HE Histogram Equalization

HIF High Impedance Fault

HMM Hidden Markov Model

IoT Internet of Things

IRT Infrared Thermography

kNN k-Nearest Neighbors

LLM Large Language Model

LPWAN Low-Power Wide-Area Network

LSTM Long Short-TermMemory

ML Machine Learning

MPPT Maximum Power Point Tracking

MQTT Message Queuing Telemetry Transport

PCA Principal Component Analysis

PLC Programmable Logic Controller

PNN Probabilistic Neural Network

PV Photovoltaic

PWM Pulse Width Modulation

RF Random Forest
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Abbreviation Full Term

RNN Recurrent Neural Network

SCADA Supervisory Control and Data Acquisition

SoC State of Charge

SOM Self-Organizing Map

SVM Support Vector Machine

UAV Unmanned Aerial Vehicle

VAE Variational Autoencoder

VFD Variable Frequency Drive

Wi-Fi Wireless Fidelity

XAI Explainable Artificial Intelligence
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