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Abstract

The accelerating global transition toward renewable energy systems has intensified the need for
intelligent, data-driven methodologies capable of addressing challenges related to variability,
uncertainty, and large-scale system integration. In this context, artificial intelligence (Al) has emerged
as a key enabler for enhancing the performance, reliability, and operational efficiency of renewable
energy technologies. This paper presents a targeted and structured review of 50 high-impact peer-
reviewed studies that collectively define the current state-of-the-art of Al-driven renewable energy
systems.

The review systematically examines core Al paradigms including machine learning, deep learning, and
reinforcement learning and their practical applications in renewable energy generation forecasting,
demand prediction, predictive maintenance, energy storage optimization, and intelligent
management of smart and decentralized energy networks. Particular attention is given to solar and
wind energy systems, where Al-based models have demonstrated significant improvements in
forecasting accuracy, system resilience, and adaptive control under dynamic operating conditions.

Beyond algorithmic developments, this study adopts a data-centric perspective to highlight the
growing importance of scalable, reproducible, and collaborative research environments in advancing
Al-enabled energy research. Within this framework, OASIS Colab is discussed as a representative
collaborative Al research environment that supports large-scale experimentation, facilitates the
integration of heterogeneous energy datasets, and enhances the reproducibility and transparency of
Al workflows. Rather than functioning as a standalone solution, OASIS Colab is positioned as a
computational research enabler that assists researchers in bridging the gap between theoretical Al
models and practical renewable energy applications.

Emerging research directions including hybrid physics-informed learning models, digital twin—assisted
energy systems, and advanced reinforcement learning strategies for grid and storage management
are also analyzed for their potential to reshape future renewable energy infrastructures. Finally, the
review identifies key technical, data-related, computational, and regulatory challenges that currently
limit the widespread adoption of Al in renewable energy systems and outlines research-oriented
recommendations aimed at maximizing the impact of Al-enabled methodologies and collaborative
research environments on sustainable energy transitions and long-term climate change mitigation.

Keywords : Renewable Energy Systems; Artificial Intelligence; Machine Learning; Deep Learning;
Smart Grids; Energy Forecasting; Collaborative Al Research Environments; OASIS Colab
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The rapid expansion of global energy consumption has become one of the defining challenges of the
twenty-first century. Driven by population growth, accelerated urban development, and increasing
industrialization, worldwide energy demand has risen at an unprecedented rate [1]. This trend has
historically been satisfied through extensive use of fossil fuel-based resources, including coal, oil, and
natural gas, which continue to dominate the global energy supply. However, this dependence has
imposed severe environmental costs, most notably through the accumulation of greenhouse gas
(GHG) emissions that contribute directly to climate change, global warming, and the intensification of
extreme weather phenomena [2].

Recent assessments indicate that energy-related carbon dioxide emissions reached approximately
37.2 GtCO, in 2023, marking the highest level recorded to date and reflecting an increase of more
than 50% compared to the early 2000s [3]. Climate projections published by international energy and
environmental agencies suggest that, without decisive mitigation measures, global mean
temperatures could increase by several degrees Celsius within this century, amplifying risks to
ecosystems, infrastructure, and socioeconomic stability [4]. These developments underscore the
urgent necessity of transforming existing energy systems toward more sustainable and low-carbon
alternatives.
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Figure 1. Global land and ocean surface temperature anomalies relative to the 20th-century average,
illustrating a significant warming trend consistent with increasing greenhouse gas emissions.

As illustrated in Fig. 1, global land and ocean surface temperature anomalies exhibit a persistent
upward trend, providing clear empirical evidence of ongoing climate change driven largely by energy-
related greenhouse gas emissions. This visual representation reinforces the urgency of mitigating
carbon-intensive energy practices and accelerating the deployment of sustainable energy solutions.

Despite mounting climate concerns, non-renewable energy sources continued to account for the
majority of global primary energy consumption between 2000 and 2023 [5]. In response to this
imbalance, renewable energy (RE) technologies—particularly solar, wind, and hydropower—have
gained increasing attention as viable pathways toward decarbonization. Renewable energy systems
offer several inherent advantages, including negligible operational emissions, long-term resource
availability, and reduced vulnerability to fuel price fluctuations and geopolitical disruptions [6]—[9].
Beyond environmental benefits, large-scale deployment of renewable energy contributes to
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improved public health outcomes by reducing air pollution-related diseases [10], enhances energy
access in remote and underserved regions, and supports economic growth and employment creation
across energy value chains [11], [12].

Technological progress has further strengthened the role of renewable energy in modern power
systems. Advances in energy storage technologies, grid interconnection, and system-level efficiency
have improved the reliability and flexibility of renewable generation, enabling higher penetration
levels in national and regional electricity markets [13]. By the end of 2023, global installed renewable
energy capacity exceeded 3.8 TW, reflecting sustained annual growth driven by policy support,
declining technology costs, and increased private-sector investment [14]. In parallel, renewable
energy has emerged as a central component of global climate mitigation strategies, particularly in

light of rising surface temperatures, shifting precipitation patterns, and the increasing frequency of
climate-induced disasters [15], [16].

Renewable energy sources accounted for more than 30% of global electricity generation in 2023, with
solar and wind energy exhibiting the most rapid growth among all technologies [27]. Forecasts
indicate that renewable electricity generation could surpass 40% of total global output within the

next decade, supported by continued innovation in storage solutions, digital grid management, and
market integration mechanisms.
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Figure 2. Evolution of global electricity generation from renewable energy sources (2000-2023),
highlighting the increasing contribution of wind and solar power.

As shown in Fig. 2, the contribution of renewable energy to global electricity generation has
increased steadily over the past two decades, with wind and solar energy demonstrating particularly
strong growth trajectories. This trend highlights the accelerating role of renewables in reshaping the
global electricity mix and supporting long-term decarbonization objectives.

Nevertheless, the large-scale integration of renewable energy into existing power systems remains
technically complex. Key challenges include resource intermittency, forecasting uncertainty, grid

stability constraints, and heterogeneous regulatory environments that vary across regions and
markets.
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Addressing these challenges increasingly requires advanced data-driven approaches capable of
operating under dynamic and uncertain conditions. In this context, artificial intelligence (Al) has
emerged as a powerful enabling technology for renewable energy systems. Al techniques—
encompassing machine learning, deep learning, and reinforcement learning—have demonstrated
strong potential in improving energy forecasting accuracy, optimizing system operation, enhancing
predictive maintenance strategies, and supporting real-time decision-making in decentralized and
smart energy networks [33]. The effectiveness of Al has already been validated across multiple
domains, including healthcare, transportation, agriculture, and industrial systems [28]-[32],
motivating its growing adoption within the energy sector.

Within renewable energy applications, Al-based models have been successfully employed to forecast
solar irradiance and wind power generation, optimize energy storage utilization, enhance system
reliability, and reduce operational costs [38]—[47]. These approaches enable renewable energy
systems to respond adaptively to fluctuating environmental conditions and demand patterns, thereby
improving overall efficiency and resilience. However, the practical deployment of Al solutions in
renewable energy research and applications is often constrained by data availability, computational
resources, and reproducibility challenges.

In addition to algorithmic innovation, recent attention has shifted toward the role of collaborative
and scalable research environments in supporting Al-driven energy research. Cloud-based and
collaborative platforms—such as OASIS Colab—are increasingly recognized as enabling infrastructures
that facilitate data integration, large-scale experimentation, and reproducible model development.
Rather than serving as standalone solutions, such environments function as computational research
assistants that support interdisciplinary collaboration, accelerate prototyping of Al models, and
enhance transparency in renewable energy studies.

Against this backdrop, this paper presents a targeted and systematic review of 50 high-impact peer-
reviewed studies on artificial intelligence applications in renewable energy systems. The review
synthesizes recent advances in Al-driven energy forecasting, predictive maintenance, energy storage
optimization, and smart grid management, while also discussing emerging research directions and
unresolved challenges. By integrating technical insights with methodological considerations—
including the role of collaborative Al research environments—this work aims to provide researchers,
engineers, and policymakers with a comprehensive understanding of how artificial intelligence can
effectively support the global transition toward sustainable and resilient renewable energy systems.

Il. Methodology

This review adopts a systematic and transparent methodological framework to analyze the present
state and future directions of artificial intelligence (Al) applications in renewable energy systems
(RES). The methodology was explicitly designed to meet international standards for high-impact
review articles, ensuring clarity, reproducibility, and analytical rigor. The overall workflow of the study
is illustrated in Fig. 3.
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Figure 3. Systematic literature review workflow for artificial intelligence applications in renewable energy
systems, highlighting the role of collaborative Al research environments (OASIS Colab)

A. Study Scope and Timeframe

The review focuses on scientific literature published between January 2020 and December 2024, a
period characterized by accelerated growth in both renewable energy deployment and advanced Al-
driven methodologies. This timeframe was selected to capture the most recent technical
developments while ensuring sufficient maturity of the reviewed approaches for critical assessment.

The scope of the study encompasses Al applications across major renewable energy domains,
including solar energy, wind energy, energy storage systems, hybrid renewable configurations, and
smart grid infrastructures. In addition to established Al techniques, emerging paradigms—such as
advanced neural architectures, data-centric learning, and Al-supported immersive and collaborative
environments—are also considered within the defined period.

B. Data Sources and Literature Search Strategy

A comprehensive literature search was conducted across explicitly identified scientific databases to
ensure coverage of high-quality and peer-reviewed research. The databases included:

e |EEE Xplore

e ScienceDirect

e Web of Science

e SpringerLink

e MDPIJournals

e Taylor & Francis Online

e Google Scholar
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Search queries were constructed using combinations of keywords related to artificial intelligence and
renewable energy systems, including terms associated with learning paradigms, energy domains, and
system-level applications. Boolean operators were applied to refine search results and reduce
redundancy.

The search strategy targeted peer-reviewed journal articles, selected conference proceedings, and
authoritative technical reports, published in English within the defined timeframe.

C. Article Identification and Selection Process

The article selection process followed a multi-stage filtering procedure, designed to progressively
refine the literature set while preserving relevance and technical depth.

¢ Initial identification stage:
The database search yielded more than 1,500 records, including journal articles, conference
papers, and technical reports.

e Preliminary screening stage:
Duplicate entries and clearly non-relevant publications were removed through title and
abstract screening, resulting in a reduced pool of approximately 500 candidate studies.

¢ Full-text evaluation stage:
The remaining articles underwent in-depth full-text assessment to evaluate methodological
quality, application relevance, and contribution significance. This process led to the final
selection of 50 high-quality and representative studies, which constitute the analytical
foundation of this review.

This progressive refinement ensures that the final corpus balances breadth, depth, and
methodological robustness.

D. Inclusion and Exclusion Criteria

To maintain analytical consistency and relevance, explicit inclusion and exclusion criteria were
applied.

Inclusion criteria:
e Studies that directly address Al applications in renewable energy systems
e Publications presenting technical, experimental, or simulation-based results

e Works focusing on operational optimization, forecasting, system management, or decision
support

e Peer-reviewed articles written in English
Exclusion criteria:
e Purely theoretical studies without application or validation
e Publications unrelated to renewable energy systems
e Non-English literature

e Duplicate or incomplete studies
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These criteria ensured that only studies with tangible technical contributions and practical relevance
were retained.

E. Data Extraction and Analytical Categorization
The selected studies were systematically analyzed and categorized based on:
e Renewable energy domain (solar, wind, storage, hybrid systems, smart grids)

e Al methodology employed (machine learning, deep learning, reinforcement learning, fuzzy
systems, generative models)

e Application objective (forecasting, optimization, predictive maintenance, control, decision
support)

This structured categorization directly informed the organization of subsequent sections of the
review, enabling a coherent comparison of methodologies, performance trends, and research gaps.

F. Role of Collaborative Al Research Environments

Beyond algorithmic techniques, the methodology explicitly acknowledges the role of collaborative
and scalable Al research environments in supporting modern renewable energy research. In
particular, platforms such as OASIS Colab are considered as supportive research infrastructures that
facilitate:

e Reproducible Al experimentation
e Collaborative model development across research teams
e Scalable data analysis and benchmarking workflows

Within this study, OASIS Colab is not treated as an analytical tool or experimental variable, but rather
as an enabling environment that supports the organization, evaluation, and synthesis of Al-based
renewable energy studies—particularly during the categorization and analysis stages illustrated in Fig.
3.

G. Methodological Rigor and Reliability

By combining a clearly defined timeframe, explicit data sources, quantitative selection criteria, and
structured analytical procedures, the adopted methodology ensures a robust, balanced, and
reproducible review process. This approach provides a reliable foundation for synthesizing current
knowledge, identifying methodological trends, and outlining future research directions in Al-enabled
renewable energy systems.

Ill. Overview of Al Technologies
A. Foundational Al Approaches in Energy Management (with the Emerging Role of OASIS Colab)

Prior to the widespread integration of artificial intelligence (Al) into the energy sector, renewable
energy (RE) technologies had already matured into diverse, well-established families—including solar,
wind, hydropower, geothermal, and biomass—each characterized by distinct technical constraints
and deployment challenges [1]. During this earlier phase, engineering progress was largely driven by
efforts to improve conversion efficiency, reduce levelized costs, and manage operational risks,
particularly those arising from the variability and uncertainty of renewable resources when deployed
at scale [2].
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However, as renewable penetration increased, conventional analytic and rule-based approaches
became insufficient to address the speed, complexity, and data intensity of modern power systems.
Bibliographic evidence indicates a rapid growth of the “Al-energy” research landscape, reflecting the
transition from deterministic planning toward data-driven forecasting, control, and decision support
[3]. This shift is tightly coupled to the availability of large-scale measurements and the need for
models that can learn non-linear relationships, adapt under uncertainty, and support near-real-time
operation in complex networked environments [4]. These requirements are especially pronounced in
microgrids, where load—generation coordination must be optimized continuously under fluctuating
renewable supply and consumption patterns [5].

Despite their promise, Al-driven renewable energy systems introduce additional structural and
infrastructural requirements. Successful deployment depends on computational resources, sensing
and communication layers, and long-term data pipelines for model development and updating. Edge
Al has therefore emerged as a practical direction for reducing latency and enabling local intelligence
near data sources (e.g., smart meters, inverter controllers, loT gateways), improving responsiveness
while limiting bandwidth dependence [7]. In parallel, federated learning offers a pathway for learning
predictive models—such as load forecasting in smart grids—without centralizing sensitive
consumption data, helping mitigate privacy and data-governance concerns [8]. These technical
evolutions also intersect with broader societal and ethical considerations: energy systems are critical
infrastructure, and Al interventions must be aligned with sustainability goals, accountability, and
fairness in access and outcomes [9].

From a planning and governance perspective, modern energy systems increasingly rely on modeling
tools to evaluate transition pathways and environmental impacts, especially when balancing
sustainability objectives with reliability and affordability [10]. Since energy demand is shaped by
demographic, economic, and urbanization drivers [11], effective energy management must integrate
technology, behavior, and adoption readiness. For example, evidence from residential contexts shows
that awareness, behavior, and perceived value strongly influence the success of smart energy
interventions [12]. Moreover, loT-based energy infrastructures—while enabling real-time monitoring
and control—introduce multi-actor coordination challenges and practical barriers spanning reliability,
interoperability, and stakeholder incentives [13], [14].

Policy and transition roadmaps further shape the feasibility of Al-enabled renewables. International
transition assessments and sectoral reporting provide policy-relevant benchmarks and highlight
strategic technology directions (e.g., hydrogen and system transformation pathways) [15], while
national energy statistics offer insight into sectoral pressures and consumption structure [16]. To
handle integration complexity across electricity, heat, fuels, and storage, Multi-Energy Systems
Integration (MESI) has gained traction as a systems-level approach that increases flexibility and helps
absorb renewable variability through coordinated operation and planning [17]. Yet, smart local
energy systems still face adoption barriers beyond technology alone—requiring institutional design,
market alighment, and implementation capacity [18]. Recent evidence also points to Al’s potential
contribution to accelerating the energy transition by improving techno-economic decision making
and operational efficiency [19], while integrated renewable energy systems (IRES) frameworks
emphasize the coupled role of generation, storage, optimization, and system-level constraints [20].
Importantly, research highlights persistent gaps between modeling insights and policy
implementation, underscoring the need for transparent, decision-relevant modeling and governance
alignment [21]. Operationally, scheduling and coordination in hybrid energy networks remains a key
technical domain where Al-enabled optimization can support more resilient and cost-effective system
behavior [22].
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Within this ecosystem, OASIS Colab can be positioned as a collaborative Al research and
experimentation environment that supports reproducible workflows for renewable energy
intelligence. Conceptually, OASIS Colab aligns with the needs of modern Al-for-energy pipelines by
enabling: (i) shared development of forecasting and optimization models across teames, (ii) structured
experimentation using distributed or privacy-preserving learning paradigms (e.g., federated learning)
[8], and (iii) practical integration of edge-oriented Al prototypes for latency-sensitive applications [7].
In this sense, OASIS Colab acts as an enabling layer that strengthens collaboration and reproducibility
in Al-enabled renewable energy research, complementing the technical foundations and governance
requirements emphasized across the transition literature [9], [19].

B. Key Al Techniques in Renewable Energy Systems (RES)

Al has become a critical technical pillar for renewable energy systems, enabling forecasting,
optimization, anomaly detection, and adaptive control in environments dominated by uncertainty
and intermittency. Contemporary transition-oriented surveys emphasize that Al is increasingly treated
as a system enabler rather than a standalone prediction tool, supporting operational intelligence
across the full value chain of renewable integration [24]. Accordingly, the dominant methodological
families applied in RES include machine learning (ML), deep learning (DL), reinforcement learning
(RL), fuzzy logic, and, increasingly, data-generative models such as GANs—each contributing
differently depending on the task, data structure, and deployment constraints.
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Figure 4. Key Al Techniques in Renewable Energy Systems and OASIS Colab Framework

C. Machine Learning (ML)

Machine learning refers to computational methods that learn predictive or decision functions from
data rather than relying on explicitly hard-coded rules [25]. In renewable energy contexts, ML is
widely used for forecasting and operational support in data-rich environments, particularly where
system operators must anticipate fluctuating production and demand. ML-based approaches are
especially relevant for microgrids, where predictive and managerial intelligence directly improves
coordination under renewable intermittency and local constraints [5]. Likewise, big-data-driven ML
analytics in networked energy systems can enhance decision support and situational awareness in
smart grid contexts [4].
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Classic algorithmic families—such as decision trees—remain important as interpretable baselines and
as components within ensemble methods [39]. Beyond forecasting, ML has also been explored for
market-facing applications, including distributed learning approaches that support energy trading and
bidding strategies in decentralized settings [40].

D. Deep Learning (DL)

Deep learning extends ML by leveraging multi-layer neural architectures to learn complex, non-linear
mappings from high-dimensional data. In renewable energy systems, DL is particularly impactful
when the data structure includes spatial or signal-rich observations (e.g., imagery, thermographic
patterns, and sensor streams). For example, DL-supported PV fault diagnosis has been demonstrated
using remote sensing and thermography-driven pipelines [41]. More recent directions incorporate
digital-twin concepts to support PV fault analysis through dynamic representation of system
behavior, strengthening interpretability and operational alignment [42]. Privacy-preserving DL
workflows are also emerging, including federated learning approaches for PV fault detection—
allowing model training across distributed sites while limiting centralized exposure of sensitive
operational data [43].

These developments reinforce the role of DL as a practical tool for reliability enhancement in
renewables—particularly when fault diagnosis and condition monitoring must be performed at scale.

E. Reinforcement Learning (RL)

Reinforcement learning is a decision-making paradigm in which an agent learns control policies
through interaction with an environment, optimizing long-term outcomes. RL is well-suited to energy
problems characterized by sequential decisions under uncertainty (e.g., storage scheduling, demand
response coordination, and multi-agent control). Foundational evidence supports RL’s growing role in
energy systems research and deployment discussions [44]. Multi-agent RL formulations have also
been proposed for building-level energy coordination, exemplified by frameworks that facilitate
scalable experimentation for such settings [45].

In storage and hybrid systems, deep RL has been applied to planning and operational control
problems to improve long-term performance objectives [46]. Related approaches address cloud
energy storage coordination via DRL formulations, emphasizing adaptive dispatch strategies under
dynamic conditions [47]. Overall, RL contributes to autonomy and resilience by enabling systems to
learn and adapt as operating contexts evolve.

F. Fuzzy Logic

Fuzzy logic provides a formal mechanism for reasoning under uncertainty using degrees of
membership rather than binary truth values. This paradigm is relevant to RES because renewable
resources and operational environments often exhibit measurement uncertainty, variability, and
incomplete information. The foundational formulation of fuzzy logic remains a reference point for
uncertainty-aware control and decision models [48]. In energy settings, fuzzy logic is typically used to
build robust control rules in uncertain environments, offering practical flexibility when precise system
modeling is difficult or costly.

G. Generative Adversarial Networks (GANSs)

GANSs are a prominent class of generative deep learning models based on adversarial training
principles [49]. In renewable energy applications, their primary value arises in data augmentation
and synthetic data generation, especially when historical meteorological or operational datasets are
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sparse, inconsistent, or geographically limited. Recent work highlights the use of GANs to generate
synthetic meteorological datasets, strengthening training data availability and potentially improving
forecasting robustness in data-constrained contexts [50]. This capability is particularly relevant for
low-resource regions and emerging markets, where limited sensing coverage can otherwise restrict Al
model reliability.

H. Synergistic and Deployment-Oriented Integration (OASIS Colab as an Enabler)

Modern RES applications increasingly benefit from combining methodological families into integrated
pipelines (e.g., ML/DL for forecasting + RL for control + privacy-preserving learning for distributed
settings). Transition-focused analyses emphasize that Al’s strategic value lies in end-to-end
integration across planning, operation, and governance rather than isolated algorithm selection [24].

Here, OASIS Colab can be framed as an enabling environment that supports such integrated pipelines

by facilitating:

1. Reproducible experimentation across forecasting, fault detection, and control workflows;

2. Collaborative development of models and benchmarking across distributed research teams;

3. Deployment-oriented research, including edge-compatible prototypes aligned with low-
latency needs [7]; and

4. Privacy-preserving learning experiments, particularly relevant to federated learning settings
in smart grids and distributed renewable assets [8].

In other words, OASIS Colab functions as a structured collaboration layer that strengthens rigor and
repeatability for Al-in-RES research, while remaining consistent with sustainability and governance
priorities discussed in the broader Al-for-SDGs context [9].

Table 1. Comparative Summary of Al Algorithms Applied in Renewable Energy Systems

Al Algorithm Key Advantages Main Weaknesses | Areas for Most Common
Improvement Applications in
Renewable
Energy
Linear e Simple and e Limited to linear | e Feature Solar energy
Regression interpretable relationships engineering forecasting
¢ Very low e Sensitive to e Non-linear Wind power
computational outliers extensions prediction
cost
Support Vector e Strong e Computationally | e Scalability Energy demand
Machines (SVM) | generalization expensive improvement forecasting
capability ¢ Performance ¢ Robust kernel Solar PV fault
e Effective in high- | degrades with design detection
dimensional noisy data
spaces
Decision Trees * Transparent and | ¢ Prone to e Pruning Energy
interpretable overfitting strategies consumption
¢ Handles mixed e Sensitive to noise | ® Ensemble prediction
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data types integration Fault diagnosis
Random Forests | ® Reduced e Limited e Explainability Wind energy
overfitting via interpretability techniques prediction
ensemble learning | * Slower inference | e Training Solar power
¢ Handles large efficiency optimization
feature sets
Gradient ¢ High predictive e Computationally | eRegularization Energy
Boosting accuracy intensive e Faster consumption
o Effective bias— ¢ Risk of overfitting | convergence forecasting
variance trade-off Solar irradiance
prediction
k-Nearest ¢ Simple and non- | e High inference e Efficient Predictive energy
Neighbors (k- parametric cost indexing management
NN) ¢ Flexible decision | ¢ Noise sensitivity | ® Noise handling | Smart grid load
boundaries balancing
Artificial Neural | * Models complex | ¢ Black-box nature | e Explainable Al Solar power
Networks non-linear systems | ¢ Overfitting risk integration prediction
(ANNSs) e High adaptability ¢ Regularization Energy load
methods forecasting

Convolutional e Automatic * Requires large e Lightweight Solar panel fault
Neural spatial feature datasetse High architecturese detection
Networks extractione computational Transfer learning | Satellite-based
(CNNs) Excellent for demand analysis
image-based data
Recurrent e Captures e Vanishing * Gated Wind energy
Neural temporal gradient problem architectures forecastingSolar
Networks dependencies e Training ¢ Training time-series
(RNNs) e Suitable for instability optimization modeling
sequential data
Long Short-Term | ¢ Handles long- e Data-intensivee e Training Energy demand
Memory (LSTM) | term Computationally acceleration forecasting
dependencies demanding ¢ Small-sample Wind power
¢ High time-series learning generation
accuracy
Reinforcement e Adaptive e Sample- e Stable learning | Energy storage
Learning (RL) decision-making inefficient training | frameworks optimization
e Suitable for ¢ Convergence e Data efficiency | Smart grid
dynamic systems instability management
Fuzzy Logic ¢ Robust under ¢ Rule-based e Automated rule | Renewable
uncertainty dependency generation resource
e Effective for non- | e Limited ¢ Hybrid Al management
linear systems scalability integration Energy efficiency
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control

I. Data Foundations: Big Data, loT, and Privacy-Preserving Learning

The performance and trustworthiness of Al models in renewable energy depend strongly on data
quality, scale, and governance. Big data analytics has been identified as a key driver of ML
effectiveness in networked energy systems, especially for smart grid decision support and scalable
forecasting [4]. Meanwhile, 10T infrastructures provide the sensing and communication substrate that
enables real-time observation and control, although practical implementation challenges remain due
to interoperability and multi-actor coordination constraints [13], [14].

To address privacy risks and governance limitations, federated learning has emerged as a promising
strategy for smart grid load forecasting and distributed intelligence—allowing models to learn from
multiple sites without direct data pooling [8]. Complementarily, edge Al supports low-latency
inference and improved operational responsiveness, particularly where centralized processing is
infeasible or costly [7]. These directions collectively support more scalable and ethically responsible
Al adoption in RES, consistent with sustainability-aligned Al frameworks [9].
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Figure 5. Comparative Mapping of Al Techniques vs. Renewable Domains and
Data Constraints (Conceptual Performance Trends Recommended)

Al’s Role in Future Renewable Energy Systems
Emerging Al Techniques for Next-Generation RES

Recent studies confirm that artificial intelligence has evolved beyond isolated forecasting and fault
diagnosis toward system-level decision support for renewable energy systems (RES), particularly
under high renewable penetration and tightening grid constraints [24]. As variability and uncertainty
increase in solar- and wind-dominated systems, Al is increasingly embedded in planning, scheduling,
and coordination layers to support operational feasibility and resilience [6], [20].

A notable shift concerns the transition from centralized, cloud-dependent intelligence to distributed
and low-latency Al architectures, where inference and control are executed closer to physical assets
such as PV plants, wind farms, microgrids, and distribution feeders [7]. This paradigm directly
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addresses operational requirements in RES, where decisions must respond to fast-changing
meteorological and load conditions that cannot tolerate excessive communication delays.

To support scientific rigor under this paradigm, reproducible and collaborative experimentation
frameworks become increasingly important. In this context, OASIS Colab is positioned as a research-
enabling environment that supports standardized benchmarking, shared datasets, and transparent
evaluation of Al pipelines across forecasting, diagnostics, and control tasks—particularly in multi-
institution and cross-climate studies

Near-Term Opportunities
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Figure 6. Roadmap of Near-and Long-Term Al Opportunities in Renewable Energy Systems
[71, [81], [24], [38], [44], [50]

Edge Al and Federated Intelligence for Low-Latency Control

A major bottleneck in operational Al deployment arises from the fact that many RES installations
cannot rely on persistent high-bandwidth connectivity or centralized computation. Edge Al mitigates
this limitation by shifting inference and local analytics closer to data sources, improving response
times and reducing communication overhead [7]. In distribution networks with high PV penetration,
edge-enabled intelligence supports faster fault localization, localized forecasting, and near-real-time
control actions, which are critical under rapid irradiance or load fluctuations [6], [20].

Complementarily, federated learning enables distributed model training across geographically
separated assets—such as substations, buildings, or microgrids—while limiting the exchange of raw
data [8]. This approach is particularly relevant in smart grids where data ownership, privacy, and
interoperability constraints restrict centralized data aggregation. Federated load forecasting has
already demonstrated feasibility in distributed grid settings [8].

When federated and edge-based workflows are combined within a reproducible research
environment such as OASIS Colab, experimental configurations, hyperparameters, and evaluation
protocols can be consistently documented and validated, improving transparency and accelerating
community-level adoption without compromising data governance.

Explainability as a Design Requirement for Grid-Critical Al

As Al systems increasingly influence operational decisions in energy infrastructure, interpretability
becomes a non-negotiable requirement. Black-box models are difficult to justify in grid-critical
contexts where safety, reliability, and regulatory compliance must be demonstrated. Explainable Al
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approaches have therefore gained traction in wind power curve modeling and fault diagnosis, where

transparency supports engineering validation and risk mitigation [38].

Similarly, explainable demand forecasting helps operators and policymakers understand the drivers of
consumption variability under demand response schemes or evolving usage patterns [33].
Standardizing explainability outputs—such as feature attributions or sensitivity analyses—
strengthens the evidence chain from data to decision. Collaborative frameworks like OASIS Colab can
support this process by enforcing consistent reporting of explainability metrics alongside predictive
performance, aligning with expectations of high-impact IEEE/Q1 publications.

Data Scarcity Mitigation and Robustness via Generative Models

Data scarcity remains a structural challenge in many RES deployments, particularly in remote or
emerging regions where sensor density and historical records are limited. Generative modeling
provides a viable pathway to mitigate these constraints by synthesizing realistic meteorological and
operational time series [50]. Such augmentation is especially valuable when training deep or hybrid
models that require high-resolution wind or solar data unavailable at all sites.

While generative adversarial networks (GANs) were originally introduced for general-purpose
generative learning [49], recent work demonstrates their effectiveness in producing synthetic wind

speed and solar irradiance sequences suitable for RES forecasting pipelines [50]. Packaging these
augmentation workflows within reproducible pipelines allows fair comparisons between models

trained with and without synthetic data, improving robustness assessment across studies.

Table 2. Recent Al Applications in Renewable Energy Systems

Reference | Al Model Used | Application Main Result Advantages Limitations
Domain Reported
[26] ML/DL-based Solar Improved Robust handling | Sensitive to
regression irradiance & irradiance of nonlinear data quality and
models PV output estimation meteorological sensor coverage
modeling accuracy effects
[27] Transformer- Solar power Superior Captures long- High
based DL forecasting temporal range computational
dependency dependencies cost
modeling
[28] CNN-BIiLSTM Wind speed Reduced MAE | Effective spatial- | Requires large
forecasting and RMSE temporal feature | training
extraction datasets
[29] CNN-LSTM + Wind power Improved Optimized Increased
Bayesian prediction forecasting hyperparameters | model
Optimization robustness complexity
[30] Hybrid Neural | Day-ahead Enhanced Handles multi- Limited
Networks solar and wind | prediction source variability | interpretability
forecasting stability
[31] ML-based Load Identification | Comprehensive Results dataset-
comparative of best-
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review forecasting performing benchmarking dependent
models
[32] ML (SVM, REF, Demand-side Improved Scalable to smart | Requires careful
ANN) load short-term grid data feature
forecasting demand engineering
accuracy
[33] Explainable Load Interpretable | Enhances trust Slight accuracy
ML (XAl) forecasting demand and transparency | trade-offs
drivers
[38] Explainable DL | Wind power Transparent Supports Model-specific
curve performance | engineering explainability
modeling diagnosis validation
[40] Distributed ML | Energy trading | Improved Supports scalable | Communication
decentralized | markets overhead
trading
efficiency
[41] CNN + PV fault High fault Non-intrusive Weather
Thermography | diagnosis detection monitoring sensitivity
accuracy
[42] Digital Twin + PV fault Accurate fault | Physics-informed | High
Al diagnosis localization modeling implementation
cost
[43] Federated PV fault Privacy- Enables multi- Slower
Learning detection preserving site learning convergence
diagnostics
[44] Reinforcement | Energy system | Adaptive Handles dynamic | Training
Learning control policy environments instability
learning
[45] Multi-agent RL | Building/grid Improved Distributed Scalability
energy coordination decision-making | challenges
coordination efficiency
[46] Deep RL Hybrid ESS Optimized Long-term High
planning storage performance computational
planning gains demand
[47] DRL Cloud energy Adaptive Handles Requires
storage control | scheduling uncertainty extensive
strategies training
[49] GAN Synthetic data | Realisticdata | Addresses data Mode collapse
generation augmentation | scarcity risk
[50] GAN-based Synthetic Improved Enhances Limited
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Challenges and Limitations of Al in Renewable Energy Systems

Despite rapid progress, Al-enabled RES face multi-layered constraints spanning data, computation,
integration, and trust. These challenges are amplified in hybrid and multi-energy systems, where
operational coupling and uncertainty increase system complexity.
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Figure 7. Taxonomy of Challenges in Al-enabled RES [6-81, [20], [24], [38], [34], [38]

Data Quality, Coverage, and Heterogeneity

Al performance is fundamentally bounded by data quality. Renewable generation and demand
datasets often suffer from missing values, inconsistent sampling, site heterogeneity, and
measurement noise, which degrade forecast accuracy and generalization [4], [25]. In solar
applications, satellite-derived surface solar irradiance combined with ML improves spatial coverage
but introduces multi-source fusion challenges that require careful handling [35], [36]. Similar issues
arise in wind systems under non-stationary operating conditions, where explainability can help

expose failure modes [38].

Computational and Real-Time Constraints

Advanced models—including DL, RL, and ensemble methods—are computationally demanding. In
grid-connected RES, latency constraints can render heavy models impractical without optimized

inference or edge deployment [7]. Moreover,

coordinating distributed assets in smart grids

introduces additional engineering complexity that must be addressed to ensure scalable operation

[6].

Integration in Hybrid and Multi-Energy Systems
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Integrated renewable energy systems require coordinated scheduling across generation, storage, and
dispatchable units. Studies on hybrid energy networks emphasize that Al must support decision-
making under uncertainty while respecting physical and operational constraints [20], [22]. This
elevates the role of Al from prediction to feasibility-aware optimization.

Societal and Sustainability Dimensions

Al deployment pathways influence who benefits from the energy transition. Without equitable access
to data, infrastructure, and expertise, Al may reinforce existing inequalities [9]. Transparent
benchmarking and open experimentation are therefore essential to align Al-driven RES with broader
sustainability goals.

Future Opportunities and Research Directions
Forecast-to-Decision Pipelines

Forecasting remains foundational, supporting scheduling, trading, and storage dispatch. Progress
spans solar forecasting with modern architectures [26], [27], [35]-[37], wind forecasting with hybrid
deep pipelines [28]—[30], [38], and demand forecasting with explainability-aware models [31]-[33]. A
high-impact research direction is integrating these forecasts directly into operational decision
pipelines under uncertainty [5], [20], [22].

Reinforcement Learning for Storage and Grid Interaction

Reinforcement learning is well-suited to sequential decision problems in energy systems [44].
Applications include multi-agent coordination in buildings [45] and adaptive storage operation [46],
[47]. Systematic, reproducible comparison of RL strategies under standardized scenarios remains an
open research need.

Microgrids and Local Resilience

Microgrids are central to decentralized energy futures. ML-based prediction and management in
microgrids are increasingly supported by edge intelligence and federated learning [5], [7], [8]. These
approaches are particularly relevant for low-resource settings and align with sustainability-driven
deployment priorities.

Methodological Standardization

High-impact research increasingly depends on standardized baselines, shared datasets, and
transparent evaluation. Here, OASIS Colab can be positioned as an enabling layer that supports
reproducible pipelines, consistent metrics, and cross-site validation—without being framed as a
dependency or commercial platform.
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Figure 8. Conceptual framework linking Al techniques, operational layers, deployment modes and reproducible validation workflows [7], [8], [24], [38].

Conclusion

This survey has critically examined the state of the art in artificial intelligence enabled renewable
energy systems, emphasizing the transition from isolated, model-centric applications toward system-
level intelligence that supports forecasting, diagnostics, operational planning, and control across
heterogeneous renewable domains. The reviewed evidence demonstrates that contemporary Al
techniques particularly machine learning, deep learning, reinforcement learning, and generative
modeling have substantially improved predictive accuracy and operational awareness for solar, wind,
demand, and storage systems . These advances have strengthened the technical feasibility of high
renewable penetration while mitigating uncertainty, intermittency, and operational risk.

Nevertheless, the analysis also reveals that large-scale deployment of Al in renewable energy systems
remains fundamentally constrained by structural challenges. Data heterogeneity, limited sensor
coverage, non-stationarity across sites, and stringent real-time requirements continue to restrict
model generalization and operational reliability. In grid-critical contexts, these limitations are further
compounded by the need for interpretability, traceability, and engineering validation, without which
Al-driven decisions cannot be safely or credibly integrated into energy infrastructures.

Emerging paradigms most notably edge intelligence, federated learning, and generative data
augmentation represent pragmatic responses to these constraints rather than purely algorithmic
innovations. By enabling low-latency inference, privacy-preserving collaboration, and robustness
under data scarcity, these approaches align Al development more closely with the physical,
regulatory, and operational realities of renewable energy systems. Reinforcement learning further
expands the control frontier by supporting sequential decision-making in storage scheduling and grid
interaction, particularly under time-varying and uncertain conditions.

Beyond algorithmic performance, this survey highlights that the next phase of progress in Al-enabled
renewable energy will be methodological. Reproducibility, transparent evaluation, standardized
baselines, and cross-site validation are no longer optional but essential to ensure scientific credibility
and real-world transferability. In this context, collaborative research environments such as OASIS

Volume 8, Issue 12, 2025 Page No: 133



AIUB Journal of Science and Engineering Issn No : 1608-3679

Colab can support structured experimentation and comparative evaluation without constraining
methodological independence, thereby strengthening the evidence chain from data to deployment.

In conclusion, artificial intelligence has matured from a supportive analytical tool into a foundational
enabler of next-generation renewable energy systems. Realizing its full potential, however, requires
aligning technical innovation with rigorous evaluation practices, system-level thinking, and
responsible deployment strategies.

Abbreviations

Al:
Artificial Intelligence

RES:
Renewable Energy Systems

RE:
Renewable Energy

ML:
Machine Learning

DL:
Deep Learning

RL:
Reinforcement Learning

loT:
Internet of Things

GHGs:
Greenhouse Gases

IEA:
International Energy Agency

ESS:
Energy Storage Systems

LSTM:
Long Short-Term Memory

CNN:
Convolutional Neural Network

RNN:
Recurrent Neural Networks

SVmMm:
Support Vector Machines

ANN:
Artificial Neural Network
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RMSE:
Root-Mean-Square Error

MAPE:
Mean Absolute Percentage Error

DT:
Digital Twin
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