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Abstract 

The accelera�ng global transi�on toward renewable energy systems has intensified the need for 

intelligent, data-driven methodologies capable of addressing challenges related to variability, 

uncertainty, and large-scale system integra�on. In this context, ar�ficial intelligence (AI) has emerged 

as a key enabler for enhancing the performance, reliability, and opera�onal efficiency of renewable 

energy technologies. This paper presents a targeted and structured review of 50 high-impact peer-

reviewed studies that collec�vely define the current state-of-the-art of AI-driven renewable energy 

systems. 

The review systema�cally examines core AI paradigms including machine learning, deep learning, and 

reinforcement learning and their prac�cal applica�ons in renewable energy genera�on forecas�ng, 

demand predic�on, predic�ve maintenance, energy storage op�miza�on, and intelligent 

management of smart and decentralized energy networks. Par�cular a�en�on is given to solar and 

wind energy systems, where AI-based models have demonstrated significant improvements in 

forecas�ng accuracy, system resilience, and adap�ve control under dynamic opera�ng condi�ons. 

Beyond algorithmic developments, this study adopts a data-centric perspec�ve to highlight the 

growing importance of scalable, reproducible, and collabora�ve research environments in advancing 

AI-enabled energy research. Within this framework, OASIS Colab is discussed as a representa�ve 

collabora�ve AI research environment that supports large-scale experimenta�on, facilitates the 

integra�on of heterogeneous energy datasets, and enhances the reproducibility and transparency of 

AI workflows. Rather than func�oning as a standalone solu�on, OASIS Colab is posi�oned as a 

computa�onal research enabler that assists researchers in bridging the gap between theore�cal AI 

models and prac�cal renewable energy applica�ons. 

Emerging research direc�ons including hybrid physics-informed learning models, digital twin–assisted 

energy systems, and advanced reinforcement learning strategies for grid and storage management 

are also analyzed for their poten�al to reshape future renewable energy infrastructures. Finally, the 

review iden�fies key technical, data-related, computa�onal, and regulatory challenges that currently 

limit the widespread adop�on of AI in renewable energy systems and outlines research-oriented 

recommenda�ons aimed at maximizing the impact of AI-enabled methodologies and collabora�ve 

research environments on sustainable energy transi�ons and long-term climate change mi�ga�on. 

Keywords : Renewable Energy Systems; Ar�ficial Intelligence; Machine Learning; Deep Learning; 
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The rapid expansion of global energy consump�on has become one of the defining challenges of the 

twenty-first century. Driven by popula�on growth, accelerated urban development, and increasing 

industrializa�on, worldwide energy demand has risen at an unprecedented rate [1]. This trend has 

historically been sa�sfied through extensive use of fossil fuel–based resources, including coal, oil, and 

natural gas, which con�nue to dominate the global energy supply. However, this dependence has 

imposed severe environmental costs, most notably through the accumula�on of greenhouse gas 

(GHG) emissions that contribute directly to climate change, global warming, and the intensifica�on of 

extreme weather phenomena [2]. 

Recent assessments indicate that energy-related carbon dioxide emissions reached approximately 

37.2 GtCO₂ in 2023, marking the highest level recorded to date and reflec�ng an increase of more 

than 50% compared to the early 2000s [3]. Climate projec�ons published by interna�onal energy and 

environmental agencies suggest that, without decisive mi�ga�on measures, global mean 

temperatures could increase by several degrees Celsius within this century, amplifying risks to 

ecosystems, infrastructure, and socioeconomic stability [4]. These developments underscore the 

urgent necessity of transforming exis�ng energy systems toward more sustainable and low-carbon 

alterna�ves. 

 

As illustrated in Fig. 1, global land and ocean surface temperature anomalies exhibit a persistent 

upward trend, providing clear empirical evidence of ongoing climate change driven largely by energy-

related greenhouse gas emissions. This visual representa�on reinforces the urgency of mi�ga�ng 

carbon-intensive energy prac�ces and accelera�ng the deployment of sustainable energy solu�ons. 

Despite moun�ng climate concerns, non-renewable energy sources con�nued to account for the 

majority of global primary energy consump�on between 2000 and 2023 [5]. In response to this 

imbalance, renewable energy (RE) technologies—par�cularly solar, wind, and hydropower—have 

gained increasing a�en�on as viable pathways toward decarboniza�on. Renewable energy systems 

offer several inherent advantages, including negligible opera�onal emissions, long-term resource 

availability, and reduced vulnerability to fuel price fluctua�ons and geopoli�cal disrup�ons [6]–[9]. 

Beyond environmental benefits, large-scale deployment of renewable energy contributes to 

Issn No : 1608-3679

Page No: 116

AIUB Journal of Science and Engineering

Volume 8, Issue 12, 2025



improved public health outcomes by reducing air pollu�on–related diseases [10], enhances energy 

access in remote and underserved regions, and supports economic growth and employment crea�on 

across energy value chains [11], [12]. 

Technological progress has further strengthened the role of renewable energy in modern power 

systems. Advances in energy storage technologies, grid interconnec�on, and system-level efficiency 

have improved the reliability and flexibility of renewable genera�on, enabling higher penetra�on 

levels in na�onal and regional electricity markets [13]. By the end of 2023, global installed renewable 

energy capacity exceeded 3.8 TW, reflec�ng sustained annual growth driven by policy support, 

declining technology costs, and increased private-sector investment [14]. In parallel, renewable 

energy has emerged as a central component of global climate mi�ga�on strategies, par�cularly in 

light of rising surface temperatures, shi�ing precipita�on pa�erns, and the increasing frequency of 

climate-induced disasters [15], [16]. 

Renewable energy sources accounted for more than 30% of global electricity genera�on in 2023, with 

solar and wind energy exhibi�ng the most rapid growth among all technologies [27]. Forecasts 

indicate that renewable electricity genera�on could surpass 40% of total global output within the 

next decade, supported by con�nued innova�on in storage solu�ons, digital grid management, and 

market integra�on mechanisms. 

 

As shown in Fig. 2, the contribu�on of renewable energy to global electricity genera�on has 

increased steadily over the past two decades, with wind and solar energy demonstra�ng par�cularly 

strong growth trajectories. This trend highlights the accelera�ng role of renewables in reshaping the 

global electricity mix and suppor�ng long-term decarboniza�on objec�ves. 

Nevertheless, the large-scale integra�on of renewable energy into exis�ng power systems remains 

technically complex. Key challenges include resource intermi�ency, forecas�ng uncertainty, grid 

stability constraints, and heterogeneous regulatory environments that vary across regions and 

markets. 
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Addressing these challenges increasingly requires advanced data-driven approaches capable of 

opera�ng under dynamic and uncertain condi�ons. In this context, ar�ficial intelligence (AI) has 

emerged as a powerful enabling technology for renewable energy systems. AI techniques—

encompassing machine learning, deep learning, and reinforcement learning—have demonstrated 

strong poten�al in improving energy forecas�ng accuracy, op�mizing system opera�on, enhancing 

predic�ve maintenance strategies, and suppor�ng real-�me decision-making in decentralized and 

smart energy networks [33]. The effec�veness of AI has already been validated across mul�ple 

domains, including healthcare, transporta�on, agriculture, and industrial systems [28]–[32], 

mo�va�ng its growing adop�on within the energy sector. 

Within renewable energy applica�ons, AI-based models have been successfully employed to forecast 

solar irradiance and wind power genera�on, op�mize energy storage u�liza�on, enhance system 

reliability, and reduce opera�onal costs [38]–[47]. These approaches enable renewable energy 

systems to respond adap�vely to fluctua�ng environmental condi�ons and demand pa�erns, thereby 

improving overall efficiency and resilience. However, the prac�cal deployment of AI solu�ons in 

renewable energy research and applica�ons is o�en constrained by data availability, computa�onal 

resources, and reproducibility challenges. 

In addi�on to algorithmic innova�on, recent a�en�on has shi�ed toward the role of collabora�ve 

and scalable research environments in suppor�ng AI-driven energy research. Cloud-based and 

collabora�ve pla�orms—such as OASIS Colab—are increasingly recognized as enabling infrastructures 

that facilitate data integra�on, large-scale experimenta�on, and reproducible model development. 

Rather than serving as standalone solu�ons, such environments func�on as computa�onal research 

assistants that support interdisciplinary collabora�on, accelerate prototyping of AI models, and 

enhance transparency in renewable energy studies. 

Against this backdrop, this paper presents a targeted and systema�c review of 50 high-impact peer-

reviewed studies on ar�ficial intelligence applica�ons in renewable energy systems. The review 

synthesizes recent advances in AI-driven energy forecas�ng, predic�ve maintenance, energy storage 

op�miza�on, and smart grid management, while also discussing emerging research direc�ons and 

unresolved challenges. By integra�ng technical insights with methodological considera�ons—

including the role of collabora�ve AI research environments—this work aims to provide researchers, 

engineers, and policymakers with a comprehensive understanding of how ar�ficial intelligence can 

effec�vely support the global transi�on toward sustainable and resilient renewable energy systems. 

II. Methodology 

This review adopts a systema�c and transparent methodological framework to analyze the present 

state and future direc�ons of ar�ficial intelligence (AI) applica�ons in renewable energy systems 

(RES). The methodology was explicitly designed to meet interna�onal standards for high-impact 

review ar�cles, ensuring clarity, reproducibility, and analy�cal rigor. The overall workflow of the study 

is illustrated in Fig. 3. 
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A. Study Scope and Timeframe 

The review focuses on scien�fic literature published between January 2020 and December 2024, a 

period characterized by accelerated growth in both renewable energy deployment and advanced AI-

driven methodologies. This �meframe was selected to capture the most recent technical 

developments while ensuring sufficient maturity of the reviewed approaches for cri�cal assessment. 

The scope of the study encompasses AI applica�ons across major renewable energy domains, 

including solar energy, wind energy, energy storage systems, hybrid renewable configura�ons, and 

smart grid infrastructures. In addi�on to established AI techniques, emerging paradigms—such as 

advanced neural architectures, data-centric learning, and AI-supported immersive and collabora�ve 

environments—are also considered within the defined period. 

B. Data Sources and Literature Search Strategy 

A comprehensive literature search was conducted across explicitly iden�fied scien�fic databases to 

ensure coverage of high-quality and peer-reviewed research. The databases included: 

 IEEE Xplore 

 ScienceDirect 

 Web of Science 

 SpringerLink 

 MDPI Journals 

 Taylor & Francis Online 

 Google Scholar 
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Search queries were constructed using combina�ons of keywords related to ar�ficial intelligence and 

renewable energy systems, including terms associated with learning paradigms, energy domains, and 

system-level applica�ons. Boolean operators were applied to refine search results and reduce 

redundancy. 

The search strategy targeted peer-reviewed journal ar�cles, selected conference proceedings, and 

authorita�ve technical reports, published in English within the defined �meframe. 

C. Ar�cle Iden�fica�on and Selec�on Process 

The ar�cle selec�on process followed a mul�-stage filtering procedure, designed to progressively 

refine the literature set while preserving relevance and technical depth. 

 Ini�al iden�fica�on stage: 

The database search yielded more than 1,500 records, including journal ar�cles, conference 

papers, and technical reports. 

 Preliminary screening stage: 

Duplicate entries and clearly non-relevant publica�ons were removed through �tle and 

abstract screening, resul�ng in a reduced pool of approximately 500 candidate studies. 

 Full-text evalua�on stage: 

The remaining ar�cles underwent in-depth full-text assessment to evaluate methodological 

quality, applica�on relevance, and contribu�on significance. This process led to the final 

selec�on of 50 high-quality and representa�ve studies, which cons�tute the analy�cal 

founda�on of this review. 

This progressive refinement ensures that the final corpus balances breadth, depth, and 

methodological robustness. 

D. Inclusion and Exclusion Criteria 

To maintain analy�cal consistency and relevance, explicit inclusion and exclusion criteria were 

applied. 

Inclusion criteria: 

 Studies that directly address AI applica�ons in renewable energy systems 

 Publica�ons presen�ng technical, experimental, or simula�on-based results 

 Works focusing on opera�onal op�miza�on, forecas�ng, system management, or decision 

support 

 Peer-reviewed ar�cles wri�en in English 

Exclusion criteria: 

 Purely theore�cal studies without applica�on or valida�on 

 Publica�ons unrelated to renewable energy systems 

 Non-English literature 

 Duplicate or incomplete studies 
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These criteria ensured that only studies with tangible technical contribu�ons and prac�cal relevance 

were retained. 

E. Data Extrac�on and Analy�cal Categoriza�on 

The selected studies were systema�cally analyzed and categorized based on: 

 Renewable energy domain (solar, wind, storage, hybrid systems, smart grids) 

 AI methodology employed (machine learning, deep learning, reinforcement learning, fuzzy 

systems, genera�ve models) 

 Applica�on objec�ve (forecas�ng, op�miza�on, predic�ve maintenance, control, decision 

support) 

This structured categoriza�on directly informed the organiza�on of subsequent sec�ons of the 

review, enabling a coherent comparison of methodologies, performance trends, and research gaps. 

F. Role of Collabora�ve AI Research Environments 

Beyond algorithmic techniques, the methodology explicitly acknowledges the role of collabora�ve 

and scalable AI research environments in suppor�ng modern renewable energy research. In 

par�cular, pla�orms such as OASIS Colab are considered as suppor�ve research infrastructures that 

facilitate: 

 Reproducible AI experimenta�on 

 Collabora�ve model development across research teams 

 Scalable data analysis and benchmarking workflows 

Within this study, OASIS Colab is not treated as an analy�cal tool or experimental variable, but rather 

as an enabling environment that supports the organiza�on, evalua�on, and synthesis of AI-based 

renewable energy studies—par�cularly during the categoriza�on and analysis stages illustrated in Fig. 

3. 

G. Methodological Rigor and Reliability 

By combining a clearly defined �meframe, explicit data sources, quan�ta�ve selec�on criteria, and 

structured analy�cal procedures, the adopted methodology ensures a robust, balanced, and 

reproducible review process. This approach provides a reliable founda�on for synthesizing current 

knowledge, iden�fying methodological trends, and outlining future research direc�ons in AI-enabled 

renewable energy systems. 

III. Overview of AI Technologies 

A. Founda�onal AI Approaches in Energy Management (with the Emerging Role of OASIS Colab) 

Prior to the widespread integra�on of ar�ficial intelligence (AI) into the energy sector, renewable 

energy (RE) technologies had already matured into diverse, well-established families—including solar, 

wind, hydropower, geothermal, and biomass—each characterized by dis�nct technical constraints 

and deployment challenges [1]. During this earlier phase, engineering progress was largely driven by 

efforts to improve conversion efficiency, reduce levelized costs, and manage opera�onal risks, 

par�cularly those arising from the variability and uncertainty of renewable resources when deployed 

at scale [2]. 

Issn No : 1608-3679

Page No: 121

AIUB Journal of Science and Engineering

Volume 8, Issue 12, 2025



However, as renewable penetra�on increased, conven�onal analy�c and rule-based approaches 

became insufficient to address the speed, complexity, and data intensity of modern power systems. 

Bibliographic evidence indicates a rapid growth of the “AI–energy” research landscape, reflec�ng the 

transi�on from determinis�c planning toward data-driven forecas�ng, control, and decision support 

[3]. This shi� is �ghtly coupled to the availability of large-scale measurements and the need for 

models that can learn non-linear rela�onships, adapt under uncertainty, and support near-real-�me 

opera�on in complex networked environments [4]. These requirements are especially pronounced in 

microgrids, where load–genera�on coordina�on must be op�mized con�nuously under fluctua�ng 

renewable supply and consump�on pa�erns [5]. 

Despite their promise, AI-driven renewable energy systems introduce addi�onal structural and 

infrastructural requirements. Successful deployment depends on computa�onal resources, sensing 

and communica�on layers, and long-term data pipelines for model development and upda�ng. Edge 

AI has therefore emerged as a prac�cal direc�on for reducing latency and enabling local intelligence 

near data sources (e.g., smart meters, inverter controllers, IoT gateways), improving responsiveness 

while limi�ng bandwidth dependence [7]. In parallel, federated learning offers a pathway for learning 

predic�ve models—such as load forecas�ng in smart grids—without centralizing sensi�ve 

consump�on data, helping mi�gate privacy and data-governance concerns [8]. These technical 

evolu�ons also intersect with broader societal and ethical considera�ons: energy systems are cri�cal 

infrastructure, and AI interven�ons must be aligned with sustainability goals, accountability, and 

fairness in access and outcomes [9]. 

From a planning and governance perspec�ve, modern energy systems increasingly rely on modeling 

tools to evaluate transi�on pathways and environmental impacts, especially when balancing 

sustainability objec�ves with reliability and affordability [10]. Since energy demand is shaped by 

demographic, economic, and urbaniza�on drivers [11], effec�ve energy management must integrate 

technology, behavior, and adop�on readiness. For example, evidence from residen�al contexts shows 

that awareness, behavior, and perceived value strongly influence the success of smart energy 

interven�ons [12]. Moreover, IoT-based energy infrastructures—while enabling real-�me monitoring 

and control—introduce mul�-actor coordina�on challenges and prac�cal barriers spanning reliability, 

interoperability, and stakeholder incen�ves [13], [14]. 

Policy and transi�on roadmaps further shape the feasibility of AI-enabled renewables. Interna�onal 

transi�on assessments and sectoral repor�ng provide policy-relevant benchmarks and highlight 

strategic technology direc�ons (e.g., hydrogen and system transforma�on pathways) [15], while 

na�onal energy sta�s�cs offer insight into sectoral pressures and consump�on structure [16]. To 

handle integra�on complexity across electricity, heat, fuels, and storage, Mul�-Energy Systems 

Integra�on (MESI) has gained trac�on as a systems-level approach that increases flexibility and helps 

absorb renewable variability through coordinated opera�on and planning [17]. Yet, smart local 

energy systems s�ll face adop�on barriers beyond technology alone—requiring ins�tu�onal design, 

market alignment, and implementa�on capacity [18]. Recent evidence also points to AI’s poten�al 

contribu�on to accelera�ng the energy transi�on by improving techno-economic decision making 

and opera�onal efficiency [19], while integrated renewable energy systems (IRES) frameworks 

emphasize the coupled role of genera�on, storage, op�miza�on, and system-level constraints [20]. 

Importantly, research highlights persistent gaps between modeling insights and policy 

implementa�on, underscoring the need for transparent, decision-relevant modeling and governance 

alignment [21]. Opera�onally, scheduling and coordina�on in hybrid energy networks remains a key 

technical domain where AI-enabled op�miza�on can support more resilient and cost-effec�ve system 

behavior [22]. 

Issn No : 1608-3679

Page No: 122

AIUB Journal of Science and Engineering

Volume 8, Issue 12, 2025



Within this ecosystem, OASIS Colab can be posi�oned as a collabora�ve AI research and 

experimenta�on environment that supports reproducible workflows for renewable energy 

intelligence. Conceptually, OASIS Colab aligns with the needs of modern AI-for-energy pipelines by 

enabling: (i) shared development of forecas�ng and op�miza�on models across teams, (ii) structured 

experimenta�on using distributed or privacy-preserving learning paradigms (e.g., federated learning) 

[8], and (iii) prac�cal integra�on of edge-oriented AI prototypes for latency-sensi�ve applica�ons [7]. 

In this sense, OASIS Colab acts as an enabling layer that strengthens collabora�on and reproducibility 

in AI-enabled renewable energy research, complemen�ng the technical founda�ons and governance 

requirements emphasized across the transi�on literature [9], [19]. 

B. Key AI Techniques in Renewable Energy Systems (RES) 

AI has become a cri�cal technical pillar for renewable energy systems, enabling forecas�ng, 

op�miza�on, anomaly detec�on, and adap�ve control in environments dominated by uncertainty 

and intermi�ency. Contemporary transi�on-oriented surveys emphasize that AI is increasingly treated 

as a system enabler rather than a standalone predic�on tool, suppor�ng opera�onal intelligence 

across the full value chain of renewable integra�on [24]. Accordingly, the dominant methodological 

families applied in RES include machine learning (ML), deep learning (DL), reinforcement learning 

(RL), fuzzy logic, and, increasingly, data-genera�ve models such as GANs—each contribu�ng 

differently depending on the task, data structure, and deployment constraints. 

 

C. Machine Learning (ML) 

Machine learning refers to computa�onal methods that learn predic�ve or decision func�ons from 

data rather than relying on explicitly hard-coded rules [25]. In renewable energy contexts, ML is 

widely used for forecas�ng and opera�onal support in data-rich environments, par�cularly where 

system operators must an�cipate fluctua�ng produc�on and demand. ML-based approaches are 

especially relevant for microgrids, where predic�ve and managerial intelligence directly improves 

coordina�on under renewable intermi�ency and local constraints [5]. Likewise, big-data-driven ML 

analy�cs in networked energy systems can enhance decision support and situa�onal awareness in 

smart grid contexts [4]. 
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Classic algorithmic families—such as decision trees—remain important as interpretable baselines and 

as components within ensemble methods [39]. Beyond forecas�ng, ML has also been explored for 

market-facing applica�ons, including distributed learning approaches that support energy trading and 

bidding strategies in decentralized se�ngs [40]. 

D. Deep Learning (DL) 

Deep learning extends ML by leveraging mul�-layer neural architectures to learn complex, non-linear 

mappings from high-dimensional data. In renewable energy systems, DL is par�cularly impac�ul 

when the data structure includes spa�al or signal-rich observa�ons (e.g., imagery, thermographic 

pa�erns, and sensor streams). For example, DL-supported PV fault diagnosis has been demonstrated 

using remote sensing and thermography-driven pipelines [41]. More recent direc�ons incorporate 

digital-twin concepts to support PV fault analysis through dynamic representa�on of system 

behavior, strengthening interpretability and opera�onal alignment [42]. Privacy-preserving DL 

workflows are also emerging, including federated learning approaches for PV fault detec�on—

allowing model training across distributed sites while limi�ng centralized exposure of sensi�ve 

opera�onal data [43]. 

These developments reinforce the role of DL as a prac�cal tool for reliability enhancement in 

renewables—par�cularly when fault diagnosis and condi�on monitoring must be performed at scale. 

E. Reinforcement Learning (RL) 

Reinforcement learning is a decision-making paradigm in which an agent learns control policies 

through interac�on with an environment, op�mizing long-term outcomes. RL is well-suited to energy 

problems characterized by sequen�al decisions under uncertainty (e.g., storage scheduling, demand 

response coordina�on, and mul�-agent control). Founda�onal evidence supports RL’s growing role in 

energy systems research and deployment discussions [44]. Mul�-agent RL formula�ons have also 

been proposed for building-level energy coordina�on, exemplified by frameworks that facilitate 

scalable experimenta�on for such se�ngs [45]. 

In storage and hybrid systems, deep RL has been applied to planning and opera�onal control 

problems to improve long-term performance objec�ves [46]. Related approaches address cloud 

energy storage coordina�on via DRL formula�ons, emphasizing adap�ve dispatch strategies under 

dynamic condi�ons [47]. Overall, RL contributes to autonomy and resilience by enabling systems to 

learn and adapt as opera�ng contexts evolve. 

F. Fuzzy Logic 

Fuzzy logic provides a formal mechanism for reasoning under uncertainty using degrees of 

membership rather than binary truth values. This paradigm is relevant to RES because renewable 

resources and opera�onal environments o�en exhibit measurement uncertainty, variability, and 

incomplete informa�on. The founda�onal formula�on of fuzzy logic remains a reference point for 

uncertainty-aware control and decision models [48]. In energy se�ngs, fuzzy logic is typically used to 

build robust control rules in uncertain environments, offering prac�cal flexibility when precise system 

modeling is difficult or costly. 

G. Genera�ve Adversarial Networks (GANs) 

GANs are a prominent class of genera�ve deep learning models based on adversarial training 

principles [49]. In renewable energy applica�ons, their primary value arises in data augmenta�on 

and synthe�c data genera�on, especially when historical meteorological or opera�onal datasets are 
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sparse, inconsistent, or geographically limited. Recent work highlights the use of GANs to generate 

synthe�c meteorological datasets, strengthening training data availability and poten�ally improving 

forecas�ng robustness in data-constrained contexts [50]. This capability is par�cularly relevant for 

low-resource regions and emerging markets, where limited sensing coverage can otherwise restrict AI 

model reliability. 

H. Synergis�c and Deployment-Oriented Integra�on (OASIS Colab as an Enabler) 

Modern RES applica�ons increasingly benefit from combining methodological families into integrated 

pipelines (e.g., ML/DL for forecas�ng + RL for control + privacy-preserving learning for distributed 

se�ngs). Transi�on-focused analyses emphasize that AI’s strategic value lies in end-to-end 

integra�on across planning, opera�on, and governance rather than isolated algorithm selec�on [24]. 

Here, OASIS Colab can be framed as an enabling environment that supports such integrated pipelines 

by facilita�ng: 

1. Reproducible experimenta�on across forecas�ng, fault detec�on, and control workflows; 

2. Collabora�ve development of models and benchmarking across distributed research teams; 

3. Deployment-oriented research, including edge-compa�ble prototypes aligned with low-

latency needs [7]; and 

4. Privacy-preserving learning experiments, par�cularly relevant to federated learning se�ngs 

in smart grids and distributed renewable assets [8]. 

In other words, OASIS Colab func�ons as a structured collabora�on layer that strengthens rigor and 

repeatability for AI-in-RES research, while remaining consistent with sustainability and governance 

priori�es discussed in the broader AI-for-SDGs context [9]. 

Table 1. Compara�ve Summary of AI Algorithms Applied in Renewable Energy Systems 

AI Algorithm Key Advantages Main Weaknesses Areas for 

Improvement 

Most Common 

Applica�ons in 

Renewable 

Energy 

Linear 

Regression 

• Simple and 

interpretable 

• Very low 

computa�onal 

cost 

• Limited to linear 

rela�onships 

• Sensi�ve to 

outliers 

• Feature 

engineering 

• Non-linear 

extensions 

Solar energy 

forecas�ng  

Wind power 

predic�on 

Support Vector 

Machines (SVM) 

• Strong 

generaliza�on 

capability 

• Effec�ve in high-

dimensional 

spaces 

• Computa�onally 

expensive 

• Performance 

degrades with 

noisy data 

• Scalability 

improvement 

• Robust kernel 

design 

Energy demand 

forecas�ng 

Solar PV fault 

detec�on 

Decision Trees • Transparent and 

interpretable 

• Handles mixed 

• Prone to 

overfi�ng 

• Sensi�ve to noise 

• Pruning 

strategies 

• Ensemble 

Energy 

consump�on 

predic�on 
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data types integra�on Fault diagnosis 

Random Forests • Reduced 

overfi�ng via 

ensemble learning 

• Handles large 

feature sets 

• Limited 

interpretability 

• Slower inference 

• Explainability 

techniques 

• Training 

efficiency 

Wind energy 

predic�on 

Solar power 

op�miza�on 

Gradient 

Boos�ng 

• High predic�ve 

accuracy 

• Effec�ve bias–

variance trade-off 

• Computa�onally 

intensive 

• Risk of overfi�ng 

•Regulariza�on 

• Faster 

convergence 

Energy 

consump�on 

forecas�ng 

Solar irradiance 

predic�on 

k-Nearest 

Neighbors (k-

NN) 

• Simple and non-

parametric 

• Flexible decision 

boundaries 

• High inference 

cost 

• Noise sensi�vity 

• Efficient 

indexing 

• Noise handling 

Predic�ve energy 

management 

Smart grid load 

balancing 

Ar�ficial Neural 

Networks 

(ANNs) 

• Models complex 

non-linear systems 

• High adaptability 

• Black-box nature 

• Overfi�ng risk 

• Explainable AI 

integra�on 

• Regulariza�on 

methods 

Solar power 

predic�on 

Energy load 

forecas�ng 

Convolu�onal 

Neural 

Networks 

(CNNs) 

• Automa�c 

spa�al feature 

extrac�on• 

Excellent for 

image-based data 

• Requires large 

datasets• High 

computa�onal 

demand 

• Lightweight 

architectures• 

Transfer learning 

Solar panel fault 

detec�on 

Satellite-based 

analysis 

Recurrent 

Neural 

Networks 

(RNNs) 

• Captures 

temporal 

dependencies 

• Suitable for 

sequen�al data 

• Vanishing 

gradient problem 

• Training 

instability 

• Gated 

architectures 

• Training 

op�miza�on 

Wind energy 

forecas�ngSolar 

�me-series 

modeling 

Long Short-Term 

Memory (LSTM) 

• Handles long-

term 

dependencies 

• High �me-series 

accuracy 

• Data-intensive• 

Computa�onally 

demanding 

• Training 

accelera�on 

• Small-sample 

learning 

Energy demand 

forecas�ng 

Wind power 

genera�on 

Reinforcement 

Learning (RL) 

• Adap�ve 

decision-making 

• Suitable for 

dynamic systems 

• Sample-

inefficient training 

• Convergence 

instability 

• Stable learning 

frameworks 

• Data efficiency 

Energy storage 

op�miza�on 

Smart grid 

management 

Fuzzy Logic • Robust under 

uncertainty 

• Effec�ve for non-

linear systems 

• Rule-based 

dependency 

• Limited 

scalability 

• Automated rule 

genera�on 

• Hybrid AI 

integra�on 

Renewable 

resource 

management 

Energy efficiency 
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control 

 

I. Data Founda�ons: Big Data, IoT, and Privacy-Preserving Learning 

The performance and trustworthiness of AI models in renewable energy depend strongly on data 

quality, scale, and governance. Big data analy�cs has been iden�fied as a key driver of ML 

effec�veness in networked energy systems, especially for smart grid decision support and scalable 

forecas�ng [4]. Meanwhile, IoT infrastructures provide the sensing and communica�on substrate that 

enables real-�me observa�on and control, although prac�cal implementa�on challenges remain due 

to interoperability and mul�-actor coordina�on constraints [13], [14]. 

To address privacy risks and governance limita�ons, federated learning has emerged as a promising 

strategy for smart grid load forecas�ng and distributed intelligence—allowing models to learn from 

mul�ple sites without direct data pooling [8]. Complementarily, edge AI supports low-latency 

inference and improved opera�onal responsiveness, par�cularly where centralized processing is 

infeasible or costly [7]. These direc�ons collec�vely support more scalable and ethically responsible 

AI adop�on in RES, consistent with sustainability-aligned AI frameworks [9]. 

AI’s Role in Future Renewable Energy Systems 

Emerging AI Techniques for Next-Genera�on RES 

Recent studies confirm that ar�ficial intelligence has evolved beyond isolated forecas�ng and fault 

diagnosis toward system-level decision support for renewable energy systems (RES), par�cularly 

under high renewable penetra�on and �ghtening grid constraints [24]. As variability and uncertainty 

increase in solar- and wind-dominated systems, AI is increasingly embedded in planning, scheduling, 

and coordina�on layers to support opera�onal feasibility and resilience [6], [20]. 

A notable shi� concerns the transi�on from centralized, cloud-dependent intelligence to distributed 

and low-latency AI architectures, where inference and control are executed closer to physical assets 

such as PV plants, wind farms, microgrids, and distribu�on feeders [7]. This paradigm directly 
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addresses opera�onal requirements in RES, where decisions must respond to fast-changing 

meteorological and load condi�ons that cannot tolerate excessive communica�on delays. 

To support scien�fic rigor under this paradigm, reproducible and collabora�ve experimenta�on 

frameworks become increasingly important. In this context, OASIS Colab is posi�oned as a research-

enabling environment that supports standardized benchmarking, shared datasets, and transparent 

evalua�on of AI pipelines across forecas�ng, diagnos�cs, and control tasks—par�cularly in mul�-

ins�tu�on and cross-climate studies 

 

Edge AI and Federated Intelligence for Low-Latency Control 

A major bo�leneck in opera�onal AI deployment arises from the fact that many RES installa�ons 

cannot rely on persistent high-bandwidth connec�vity or centralized computa�on. Edge AI mi�gates 

this limita�on by shi�ing inference and local analy�cs closer to data sources, improving response 

�mes and reducing communica�on overhead [7]. In distribu�on networks with high PV penetra�on, 

edge-enabled intelligence supports faster fault localiza�on, localized forecas�ng, and near-real-�me 

control ac�ons, which are cri�cal under rapid irradiance or load fluctua�ons [6], [20]. 

Complementarily, federated learning enables distributed model training across geographically 

separated assets—such as substa�ons, buildings, or microgrids—while limi�ng the exchange of raw 

data [8]. This approach is par�cularly relevant in smart grids where data ownership, privacy, and 

interoperability constraints restrict centralized data aggrega�on. Federated load forecas�ng has 

already demonstrated feasibility in distributed grid se�ngs [8]. 

When federated and edge-based workflows are combined within a reproducible research 

environment such as OASIS Colab, experimental configura�ons, hyperparameters, and evalua�on 

protocols can be consistently documented and validated, improving transparency and accelera�ng 

community-level adop�on without compromising data governance. 

Explainability as a Design Requirement for Grid-Cri�cal AI 

As AI systems increasingly influence opera�onal decisions in energy infrastructure, interpretability 

becomes a non-nego�able requirement. Black-box models are difficult to jus�fy in grid-cri�cal 

contexts where safety, reliability, and regulatory compliance must be demonstrated. Explainable AI 
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approaches have therefore gained trac�on in wind power curve modeling and fault diagnosis, where 

transparency supports engineering valida�on and risk mi�ga�on [38]. 

Similarly, explainable demand forecas�ng helps operators and policymakers understand the drivers of 

consump�on variability under demand response schemes or evolving usage pa�erns [33]. 

Standardizing explainability outputs—such as feature a�ribu�ons or sensi�vity analyses—

strengthens the evidence chain from data to decision. Collabora�ve frameworks like OASIS Colab can 

support this process by enforcing consistent repor�ng of explainability metrics alongside predic�ve 

performance, aligning with expecta�ons of high-impact IEEE/Q1 publica�ons. 

Data Scarcity Mi�ga�on and Robustness via Genera�ve Models 

Data scarcity remains a structural challenge in many RES deployments, par�cularly in remote or 

emerging regions where sensor density and historical records are limited. Genera�ve modeling 

provides a viable pathway to mi�gate these constraints by synthesizing realis�c meteorological and 

opera�onal �me series [50]. Such augmenta�on is especially valuable when training deep or hybrid 

models that require high-resolu�on wind or solar data unavailable at all sites. 

While genera�ve adversarial networks (GANs) were originally introduced for general-purpose 

genera�ve learning [49], recent work demonstrates their effec�veness in producing synthe�c wind 

speed and solar irradiance sequences suitable for RES forecas�ng pipelines [50]. Packaging these 

augmenta�on workflows within reproducible pipelines allows fair comparisons between models 

trained with and without synthe�c data, improving robustness assessment across studies. 

Table 2. Recent AI Applica�ons in Renewable Energy Systems 

Reference AI Model Used Applica�on 

Domain 

Main Result 

Reported 

Advantages Limita�ons 

[26] ML/DL-based 

regression 

models 

Solar 

irradiance & 

PV output 

modeling 

Improved 

irradiance 

es�ma�on 

accuracy 

Robust handling 

of nonlinear 

meteorological 

effects 

Sensi�ve to 

data quality and 

sensor coverage 

[27] Transformer-

based DL 

Solar power 

forecas�ng 

Superior 

temporal 

dependency 

modeling 

Captures long-

range 

dependencies 

High 

computa�onal 

cost 

[28] CNN–BiLSTM Wind speed 

forecas�ng 

Reduced MAE 

and RMSE 

Effec�ve spa�al–

temporal feature 

extrac�on 

Requires large 

training 

datasets 

[29] CNN–LSTM + 

Bayesian 

Op�miza�on 

Wind power 

predic�on 

Improved 

forecas�ng 

robustness 

Op�mized 

hyperparameters 

Increased 

model 

complexity 

[30] Hybrid Neural 

Networks 

Day-ahead 

solar and wind 

forecas�ng 

Enhanced 

predic�on 

stability 

Handles mul�-

source variability 

Limited 

interpretability 

[31] ML-based 

compara�ve 

Load Iden�fica�on 

of best-

Comprehensive Results dataset-
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review forecas�ng performing 

models 

benchmarking dependent 

[32] ML (SVM, RF, 

ANN) 

Demand-side 

load 

forecas�ng 

Improved 

short-term 

demand 

accuracy 

Scalable to smart 

grid data 

Requires careful 

feature 

engineering 

[33] Explainable 

ML (XAI) 

Load 

forecas�ng 

Interpretable 

demand 

drivers 

Enhances trust 

and transparency 

Slight accuracy 

trade-offs 

[38] Explainable DL Wind power 

curve 

modeling 

Transparent 

performance 

diagnosis 

Supports 

engineering 

valida�on 

Model-specific 

explainability 

[40] Distributed ML Energy trading Improved 

decentralized 

trading 

efficiency 

Supports scalable 

markets 

Communica�on 

overhead 

[41] CNN + 

Thermography 

PV fault 

diagnosis 

High fault 

detec�on 

accuracy 

Non-intrusive 

monitoring 

Weather 

sensi�vity 

[42] Digital Twin + 

AI 

PV fault 

diagnosis 

Accurate fault 

localiza�on 

Physics-informed 

modeling 

High 

implementa�on 

cost 

[43] Federated 

Learning 

PV fault 

detec�on 

Privacy-

preserving 

diagnos�cs 

Enables mul�-

site learning 

Slower 

convergence 

[44] Reinforcement 

Learning 

Energy system 

control 

Adap�ve 

policy 

learning 

Handles dynamic 

environments 

Training 

instability 

[45] Mul�-agent RL Building/grid 

energy 

coordina�on 

Improved 

coordina�on 

efficiency 

Distributed 

decision-making 

Scalability 

challenges 

[46] Deep RL Hybrid ESS 

planning 

Op�mized 

storage 

planning 

Long-term 

performance 

gains 

High 

computa�onal 

demand 

[47] DRL Cloud energy 

storage control 

Adap�ve 

scheduling 

strategies 

Handles 

uncertainty 

Requires 

extensive 

training 

[49] GAN Synthe�c data 

genera�on 

Realis�c data 

augmenta�on 

Addresses data 

scarcity 

Mode collapse 

risk 

[50] GAN-based Synthe�c Improved Enhances Limited 
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modeling meteorological 

data 

forecas�ng 

robustness 

generaliza�on extreme-event 

fidelity 

 

Challenges and Limita�ons of AI in Renewable Energy Systems 

Despite rapid progress, AI-enabled RES face mul�-layered constraints spanning data, computa�on, 

integra�on, and trust. These challenges are amplified in hybrid and mul�-energy systems, where 

opera�onal coupling and uncertainty increase system complexity.

 

Data Quality, Coverage, and Heterogeneity 

AI performance is fundamentally bounded by data quality. Renewable genera�on and demand 

datasets o�en suffer from missing values, inconsistent sampling, site heterogeneity, and 

measurement noise, which degrade forecast accuracy and generaliza�on [4], [25]. In solar 

applica�ons, satellite-derived surface solar irradiance combined with ML improves spa�al coverage 

but introduces mul�-source fusion challenges that require careful handling [35], [36]. Similar issues 

arise in wind systems under non-sta�onary opera�ng condi�ons, where explainability can help 

expose failure modes [38]. 

Computa�onal and Real-Time Constraints 

Advanced models—including DL, RL, and ensemble methods—are computa�onally demanding. In 

grid-connected RES, latency constraints can render heavy models imprac�cal without op�mized 

inference or edge deployment [7]. Moreover, coordina�ng distributed assets in smart grids 

introduces addi�onal engineering complexity that must be addressed to ensure scalable opera�on 

[6]. 

Integra�on in Hybrid and Mul�-Energy Systems 
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Integrated renewable energy systems require coordinated scheduling across genera�on, storage, and 

dispatchable units. Studies on hybrid energy networks emphasize that AI must support decision-

making under uncertainty while respec�ng physical and opera�onal constraints [20], [22]. This 

elevates the role of AI from predic�on to feasibility-aware op�miza�on. 

Societal and Sustainability Dimensions 

AI deployment pathways influence who benefits from the energy transi�on. Without equitable access 

to data, infrastructure, and exper�se, AI may reinforce exis�ng inequali�es [9]. Transparent 

benchmarking and open experimenta�on are therefore essen�al to align AI-driven RES with broader 

sustainability goals. 

Future Opportuni�es and Research Direc�ons 

Forecast-to-Decision Pipelines 

Forecas�ng remains founda�onal, suppor�ng scheduling, trading, and storage dispatch. Progress 

spans solar forecas�ng with modern architectures [26], [27], [35]–[37], wind forecas�ng with hybrid 

deep pipelines [28]–[30], [38], and demand forecas�ng with explainability-aware models [31]–[33]. A 

high-impact research direc�on is integra�ng these forecasts directly into opera�onal decision 

pipelines under uncertainty [5], [20], [22]. 

Reinforcement Learning for Storage and Grid Interac�on 

Reinforcement learning is well-suited to sequen�al decision problems in energy systems [44]. 

Applica�ons include mul�-agent coordina�on in buildings [45] and adap�ve storage opera�on [46], 

[47]. Systema�c, reproducible comparison of RL strategies under standardized scenarios remains an 

open research need. 

Microgrids and Local Resilience 

Microgrids are central to decentralized energy futures. ML-based predic�on and management in 

microgrids are increasingly supported by edge intelligence and federated learning [5], [7], [8]. These 

approaches are par�cularly relevant for low-resource se�ngs and align with sustainability-driven 

deployment priori�es. 

Methodological Standardiza�on 

High-impact research increasingly depends on standardized baselines, shared datasets, and 

transparent evalua�on. Here, OASIS Colab can be posi�oned as an enabling layer that supports 

reproducible pipelines, consistent metrics, and cross-site valida�on—without being framed as a 

dependency or commercial pla�orm. 
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Conclusion 

This survey has cri�cally examined the state of the art in ar�ficial intelligence enabled renewable 

energy systems, emphasizing the transi�on from isolated, model-centric applica�ons toward system-

level intelligence that supports forecas�ng, diagnos�cs, opera�onal planning, and control across 

heterogeneous renewable domains. The reviewed evidence demonstrates that contemporary AI 

techniques par�cularly machine learning, deep learning, reinforcement learning, and genera�ve 

modeling have substan�ally improved predic�ve accuracy and opera�onal awareness for solar, wind, 

demand, and storage systems . These advances have strengthened the technical feasibility of high 

renewable penetra�on while mi�ga�ng uncertainty, intermi�ency, and opera�onal risk. 

Nevertheless, the analysis also reveals that large-scale deployment of AI in renewable energy systems 

remains fundamentally constrained by structural challenges. Data heterogeneity, limited sensor 

coverage, non-sta�onarity across sites, and stringent real-�me requirements con�nue to restrict 

model generaliza�on and opera�onal reliability. In grid-cri�cal contexts, these limita�ons are further 

compounded by the need for interpretability, traceability, and engineering valida�on, without which 

AI-driven decisions cannot be safely or credibly integrated into energy infrastructures. 

Emerging paradigms most notably edge intelligence, federated learning, and genera�ve data 

augmenta�on represent pragma�c responses to these constraints rather than purely algorithmic 

innova�ons. By enabling low-latency inference, privacy-preserving collabora�on, and robustness 

under data scarcity, these approaches align AI development more closely with the physical, 

regulatory, and opera�onal reali�es of renewable energy systems. Reinforcement learning further 

expands the control fron�er by suppor�ng sequen�al decision-making in storage scheduling and grid 

interac�on, par�cularly under �me-varying and uncertain condi�ons. 

Beyond algorithmic performance, this survey highlights that the next phase of progress in AI-enabled 

renewable energy will be methodological. Reproducibility, transparent evalua�on, standardized 

baselines, and cross-site valida�on are no longer op�onal but essen�al to ensure scien�fic credibility 

and real-world transferability. In this context, collabora�ve research environments such as OASIS 
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Colab can support structured experimenta�on and compara�ve evalua�on without constraining 

methodological independence, thereby strengthening the evidence chain from data to deployment. 

In conclusion, ar�ficial intelligence has matured from a suppor�ve analy�cal tool into a founda�onal 

enabler of next-genera�on renewable energy systems. Realizing its full poten�al, however, requires 

aligning technical innova�on with rigorous evalua�on prac�ces, system-level thinking, and 

responsible deployment strategies. 

Abbrevia�ons 

AI: 

Ar�ficial Intelligence 

RES: 

Renewable Energy Systems 

RE: 

Renewable Energy 

ML: 

Machine Learning 

DL: 

Deep Learning 

RL: 

Reinforcement Learning 

IoT: 

Internet of Things 

GHGs: 

Greenhouse Gases 

IEA: 

Interna�onal Energy Agency 

ESS: 

Energy Storage Systems 

LSTM: 

Long Short-Term Memory 

CNN: 

Convolu�onal Neural Network 

RNN: 

Recurrent Neural Networks 

SVM: 

Support Vector Machines 

ANN: 

Ar�ficial Neural Network 
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RMSE: 

Root-Mean-Square Error 

MAPE: 

Mean Absolute Percentage Error 

DT: 

Digital Twin 
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